Nov 052015

The MRO 2.4-Meter Telescope will receive funding from the Federal Aviation Administration (FAA) in early 2016 to monitor the launch and re-entry of commercial space vehicles from Spaceport America, a facility north of Las Cruces, New Mexico. MRO investigators will record and monitor suborbital space vehicles, stratospheric balloons, and other assets. The Principle Investigator and Co-Principle Investigator of the grant, Drs. Eileen and William Ryan, have extensive experience with tracking fast-moving natural and man-made objects in orbit.

An undergraduate student from New Mexico Tech’s Mechanical Engineering Department will assist with software development for closed-loop tracking of fast terrestrial targets with the MRO 2.4-Meter Telescope. As observations are acquired, the student will analyze performance data to supplement or validate safety data collected from other sources.

Operational funding for the MRO 2.4-Meter Telescope is dependent on outside grants and contracts. The monies from the FAA will help keep the Observatory financially viable. Currently, 80% of operations funding comes from NASA grants to study Near-Earth asteroids and comets, national security work involving the Air Force, and internal New Mexico Tech research projects. Over 100 students per year utilize the 2.4-meter observatory to supplement their coursework and acquire hands-on experience in exciting ongoing initiatives.

Oct 202015

Exciting news from Magdalena Ridge Observatory and New Mexico Tech: “New Mexico Tech signed a five-year, $25 million cooperative agreement with the Air Force Research Laboratory to support continued development of the interferometer at the Magdalena Ridge Observatory. Dr. Van Romero, vice president of research at Tech, said the new funding will allow Tech to complete three telescopes, mounts and enclosures on the mountaintop facility.” Read more here.

MRO Interferometer

Anatomy of the MRO Interferometer [Popular Mechanics, 2009]

Oct 152015

In late September and early October, Dr. Michelle Creech-Eakman spoke to members of the Las Cruces Astronomical Society at Doña Ana Community College and a colloquium at Lowell Observatory in Flagstaff, Arizona about exoplanetary astronomy and her work with the New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI). NESSI is a highly sensitive ground-based instrument mounted on the MRO 2.4-meter Optical Telescope that studies the atmospheres of distant planets. The ultimate goal of Creech-Eakman’s research is to discover planets with biosignatures like oxygen, water vapor, and methane in their atmospheres, all signs of habitability. While in Flagstaff, Dr. Creech-Eakman also worked with Dr. Gerard van Belle and Dr. Alma Ruiz Velasco on data retrieved by Palomar Testbed Interferometer (PTI). Three papers will be submitted using this data next year.

The orange supergiant star Pollux in the northern constellation of Gemini was one of the first stars observed by NESSI. Image Credit: MRO

The orange supergiant star was one of the first stars observed by NESSI. Image Credit: MRO


Oct 082015

The Magdalena Ridge Observatory Interferometer (MROI) will be featured in the American Astronomical Society (AAS) 2016 Wall Calendar. Thanks to the efforts of aerial photographer Tyson Eakman, MROI Project Scientist Dr. Michelle Creech-Eakman, and MROI Senior Opto-Mechanical Engineer Andres Olivares, a spectacular image of the MROI will be seen by all members of the Society. The AAS Wall Calendar is provided to its members free of charge and highlights “important astronomical events month by month.”

Magdalena Ridge Observatory (MROI)


Apr 042014
NESSI team working hard to get first light on NESSI

NESSI team working hard to get first light on NESSI

Edited 3/5/2014

Four and half years since its initial conception, the New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI), a multi-object near-infrared (NIR) spectrometer achieved first light using the Magdalena Ridge Observatory (MRO) 2.4-meter telescope.

In the past, exoplanet spectroscopy was only possible with space-based telescope. NESSI is one of the first ground-based characterization instruments and is attracting attention from astrophysicists around the world, placing MRO in the forefront of exoplanet research.

NESSI is a spectrometer designed, built, and optimized for probing chemical composition of atmospheres of exoplanets—planets orbiting distant stars, outside of our Solar System.  Using spectroscopy to observe exoplanets’ atmospheres allows astronomers to study the molecular composition of the planet’s atmospheres, making it possible to identify the presence, and quantify the abundance, of oxygen and carbon-bearing molecules, as well as temperature and winds.  NESSI will observe exoplanets in our galaxy, most of which are within 100 light years from our Solar System.

Pollux, a bright start in the Gemini constellation was the first target NESSI achieved first light on.

Pollux, a bright start in the Gemini constellation was the first target NESSI achieved first light on.

During the first night’s observations, NESSI collected light from several targets, including some bright stars and globular clusters. Pollux, a bright start in the Gemini constellation was the first target because it has a good infrared signal for the detector.

“First light is always a big moment for any new instrument. The team is very excited about getting light through the system, and the performance is great,” said Dr. Michelle Creech-Eakman, the Science Principal Investigator and MRO Project Scientist.

Initially conceptualized in 2009, NESSI is funded by New Mexico Institute of Mining and Technology (NMT) and NASA EPSCoR at New Mexico State University (NMSU). MRO’s PI and NMT Vice President of Research and Economic Development, Van Romero led the efforts to secure the funding.

“The new instrument brings diversity to the observatory’s capability, which is vital in today’s competitive funding environment. But, more importantly, it brings new science to our campus, which means new opportunities for our students,’ said Romero.

NESSI installed on the 2.4-meter telescope

NESSI installed on the 2.4-meter telescope

The optical and mechanical design was completed at MRO with collaborators from Jet Propulsion Laboratory (JPL) in Pasadena, CA. Most of its fabrication was done in Arizona and New Mexico and the instrument was assembled at the MRO optics lab located on the NMT campus.

“Getting first light was a strangely serene experience.  We spent all of this time with the design, fabrication, assembly, and installation – also the prep work for the observations themselves,” said NMT Physics graduate student Heather Bloemhard.

Exoplanets were first suspected to exist as early as the 19th century but the first confirmed discovery did not occur until 1988. Since then hundreds of exoplanets have been uncovered orbiting their host stars and scientists are now moving from the discovery phase to the characterization phase.

The JPL team, led by Dr. Mark Swain initially devised the novel approach used by NESSI, using infrared data from ground-based telescopes to acquire and deduce information about exoplanet atmospheres.

NESSI 3D design drawing.

NESSI 3D design drawing.

NESSI is unique, as its design has been optimized to have very few moving components, which allows for great stability and to have sensitive detectors with which to measure the exoplanet atmospheres.

NESSI is the first purpose-built spectrometer to measure exoplanet transit spectroscopy,” says Creech-Eakman.

Now that NESSI achieved first light, the team plans to continue using the instrument to take spectra on many types of objects, including stars, brown dwarfs, planets, and other galaxies.  It also has imaging modes and the team plans to test these capabilities.

30 nights have been allocated to studying exoplanets. Each target requires ½ of a night to collect full spectra.

“There has been lots of excitement and interest about NESSI from groups of folks interested in measuring exoplanet atmospheres, and so that is our main goal. Other folks will undoubtedly want to try other science, so how much gets done with NESSI will depend on getting on the 2.4-meter telescope,” says Creech-Eakman.

2.4-meter telescope building on top of the Magdalena Ridge.

2.4-meter telescope building on top of the Magdalena Ridge.

The MRO 2.4-meter telescope became operational in late 2007 and is primarily utilized to observe, track, and characterize solar system astronomical targets, artificial Earth satellites, space vehicles, and terrestrial military targets. It is located at 10,600 feet in the Magdalena Mountains of the Cibola National Forest, approximately 30 miles west of Socorro, NM.

MRO was formed in 1996 as a consortium with plans to build and operate a 2.4-meter telescope and a 10-element optical and NIR interferometer (MROI).


KRQE News Report on NESSI


Read more about NESSI

For questions or inquiries please contact: Mary Edwards Tel: (575) 835 – 6431