The Magadalena Ridge Observatory Interferometer:
Custom Near-IR Beamsplitter and AR Coatings
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Abbreviations:

Gold coated mirrors (M), Transmission/Reflection 50% beamsplitter [T(50)/R(50)], Transmission/Reflection 33.33% beamsplitter
[T(33)/R(33)], Transmission Anti-reflection [T(AR)], left hand side beam (LHS), right hand side beam (RHS), Right reflected (RR), Right
transmitted (RT), Left Reflected (LR) , Left Transmitted (LT)

+ 1 Coatings being applied by Optical Surface Technologies , (2801 Unit E Broadbent Parkway N.E., Albuquerque, NM 87107)
+ 2Infrasil 301 substrates manufactured by IC Optical Systems, (190-192 Ravenscroft Road Beckenham, Kent BR3 4TW, United Kingdom)
+ 3Optimization was performed using the Essential Macleod Optical Thin Film Design and Analysis software package.
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2). The AR coating is optimized? for operation in the J, H, and K bands (1.1 um to 2.4 um) allowing it to be used by effects on visibilities. Path C-B’s .
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0 B 23 Fig 9 (a)-(b) — Visibility factors due to polarization differences between s and p for combiner outputs
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Fig 2 -- 2D schematic of the FT beam combiner layout showing srefl, pre . con (H)=49.5 um, and A, (K)= 64.5 um.
A-B (e.g. $3/52) 2 inputs and outputs from all 10 telescopes. Beams enter from the beams ’IOW&II‘dS and through such a plate are From Modulators 1) . s - . W —
C-B (e.g. W1/W2) 3 top left and exit at bottom right and left, in pairs that have shown in Figure 7. Note that the reflected st ptrene
interfered. i . —
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P —— . TirTEs TSy aRaI the coating once. Figure 11 and Tables 2-5 provide a summary of galculated visibilities (V) in s and p polarl_zatlon states normalized with
S R— . the case of perfect coatings (V ;). Table comparisons were made at the mean wavelength in the H and K bands.
Column “VI” in Tables 2-5 show that the two emergent beams from outputs 1 and 2 (RR/LT & RT/LR) are roughly equal
The frinae tracker will e in both the H (1.5-148 dK_(2.0-2.31 bands. The FT | : which is ideal. Performance of these coatings is excellent with visibility losses comparable (and in some cases slightly
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(Figure 2) shows light from 10 unit telescopes (UTs) entering at the upper left and exiting at the two the coatings, than for the ideal case
complementary combiner outputs: 1 (right reflected/left transmitted: RR/LT) and 2 (right ’
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Because beams in the combiner traverse various components in different directions and in different Fig 7 — A diagram representing the 50% beamsplitter combination point. Lorsl ] ot e -
orders, there exist unique paths (labeled A thru H) through the combiner that are not all identical in - o
detail. These eight unique paths comprise six non-redundant combination pairs: A-B, C-B, D-E, F-B, rorr ] R e I b =
C-G, C-H; Figure 3 (below) shows their differences explicitly. Given the coating properties it is the o5l L oosl —ocns
differences between these paths that needs to be analyzed — in particular, how the coating properties COMPUTING THE VISIBILITY LOSS FACTORS _ i
and these differences impact the interferometric performance. : L : . : : : z z
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Fig 3 — 2D schematic of each combination pair. From left to right : A-B, C-B, D-E, F-B, C-G, C-H. Table 4 Table 5

Tables 2-5 — These tables show the visibility (V), ideal visibility (V4. Visibility*intensity (\V1), and visibility normalized by the ideal (V/V,4,). Table 2: p-
polarization and combiner output RR/LT. Table 3: s-polarization and combiner output RR/LT. Table 4: p-polarization and combiner output RT/LR. Table 5 :

s-polarization and combiner output RT/LR..




