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1 Objective

This memo outlines the relationship between the polarization properties of the interferometer
optics, the source polarization structure and the calibrated complex visibility signal measured
by the interferometer. The worst-case errors due to source polarization and interferometer
optics imperfections are estimated using simple models.

2 Summary

The product of the diattenuation of the interferometer arms and the source percentage polar-
ization is sufficient to give an adequate measure of the leakage of signals between the Stokes
Q, U, and V visibilities and the Stokes I visibility. The above statement is made proviso to
the following assumptions: all interferometer beam paths are symmetric, the optics are weakly
diattenuating and the sources are more strongly polarized than the calibrators.

For the articulating tertiary mirror telescope design, visibility errors due to the polarization
problems are likely to be no more than about 2 percent in the most extreme imaginable case,
and are less than 1 percent in more realistic cases.

3 Introduction

Oblique reflections in the optics of an interferometer mean that differently polarized light will be
subject to different amplitude and phase changes when transmitted through the interferometer.
Thus it is likely that sources with the same overall intensity pattern but different polarizations
will give rise to different visibility measurements in the interferometer. Conversely, given a
visibility measurement of a source, there will be an ambiguity between source morphology and
source polarization structure, which will make scientific interpretation of the results difficult. An
extra complication to this interpretation is that the polarization properties of the interferometer
optics (especially the unit telescopes) will change as a function of the hour angle of the source.

One way around this is to make several measurements with different polarizers in front
of the beam combiner optics and (given some knowledge of the interferometer polarization
properties) use these measurements to recover both the source intensity structure and the source
polarization structure. This requires complex and potentially lossy interferometer optics and
severely impacts the total time required to make a given observation. A simpler alternative is to
make the interferometer sensitive only to the intensity distribution and not to the polarization
structure of the source. The next sections quantify what is meant by polarization structure
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of the source, defines a model for the polarization properties of the interferometer optics, and
calculates how the two interact in an interferometric measurement.

4 Stokes images

For a single pixel detector, the Stokes parameters are defined as follows: measure the total
intensity (with no polarizer present) and call this I0. Place an ideal horizontal linear polarizer
in front of the detector and call the measured intensity I1. Rotate the linear polarizer by 45◦

and call the measured intensity I2. Replace the linear polarizer with an ideal polarizer which
lets though only left-handed circular polarization and call the measured intensity I3. Then the
Stokes parameters are

S0 = I0 (1)

S1 = I1 − I0 (2)

S2 = I2 − I0 (3)

S3 = I3 − I0 (4)

These parameters are sometimes labeled as I, Q, U and V, but we adopt the above conven-
tion here (V gets confused with visibility) — the main thing to remember is that “Stokes I”
corresponds to S0.

The single-pixel Stokes parameters can readily be generalized to a spatially-varying intensity
distribution (which we shall call here an “image”) where I0(x, y), I1(x, y) etc represent the inten-
sities measured at the pixel with coordinate (x, y). Any incoherent partially polarized intensity
distribution is then fully determined by the set of four images {S0(x, y), S1(x, y), S2(x, y), S3(x, y)}.
An ideal polarimetric interferometer will measure all four of these images. Alternatively, a “po-
larization fidelity” interferometer will measure only S0(x, y), but measure this independent of
the values of S1(x, y), S1(x, y) and S3(x, y): in other words a polarization fidelity interferometer
will minimize the “leakage” of the S1, S2 and S3 images into the measurement of the S0 image.

5 Interferometer optics

For simplicity, we analyze here an optical interferometer which is not affected by atmospheric
turbulence, i.e. where the complex fringe visibility is a good observable. It is relatively easy
to use the results presented here to derive results which include the effects of atmospheric
turbulence, since the atmosphere is non-polarizing.

A beam entering one telescope, traveling through the interferometer optics, and landing on
the fringe detector undergoes a polarization state transformation as it passes through or reflects
off each optical surface. If we assume for simplicity a quasi-monochromatic plane wavefront and
spatially homogeneous optical surfaces, then the instantaneous polarization state of the beam
can be described by a simple Jones vector J = [Ex, Ey] and the polarization transformation at
any surface can be described by a Jones matrix Mi for surface i which acts on the input Jones
vector to produce an output Jones vector. It follows that there exists a Jones matrix for any
given arm of the interferometer M =

∏n
i=1 Mi which describes the transformation of the light

through the entire optical train to the detector.
For any optical system with Jones matrix M there will be a corresponding pair of orthonor-

mal Jones vectors J+ and J− which represent characteristic polarization states. These states
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are eigenstates of the optical system, i.e they pass through the optics without a change in the
state of polarization:

MJ+ = a+J+ (5)

MJ− = a−J− (6)

where a+ and a− are scalar complex eigenvalues with |a+|, |a−| < 1 for a lossy optical sys-
tem. Note that these eigenstates are in general elliptical polarization states: linear or circular
polarization states are special cases.

We hereafter assume that the polarization properties of the different interferometer arms
are identical, which can be achieved by making all the beam paths symmetric with respect to
number of surfaces and their incidence angles (this is not possible in the beam combiner optics,
but the effects of any asymmetries can be minimized by designing the beam combiner to have
only low angles of incidence). As a result the Jones matrices of the two arms will be identical
(we can multiply the Jones matrix for each arm by a different complex scalar to encode any
optical path delay differences between arms, but choose not to do so here for simplicity).

In such a case, the interference of two partially coherent beams can be fully characterized
by the interference of each of the two characteristic polarizations from one arm of the inter-
ferometer with the corresponding polarization state from the other arm of the interferometer:
the two characteristic polarizations are orthogonal so there is no cross-interference term. If the
instantaneous E-fields incident on each of two telescopes in each of the two polarizations are
denoted by E+(1), E−(1), E+(2) and E−(2) respectively then the complex amplitude of the
fringes at the beam combiner will be given by

A12 = a+(1)a∗+(2) < E+(1)E∗

+(2) > +a−(1)a∗
−
(2) < E−(1)E∗

−
(2) >

Noting that the two arms are identical in terms of polarization so that a+(1) = a+(2) = a+ we
have

A12 = |a+|
2 < E+(1)E∗

+(2) > +|a−|
2 < E−(1)E∗

−
(2) > . (7)

This equation can be interpreted as saying that the observed fringe pattern is the superposition
of two intensity patterns corresponding to the interference of the E+ fields from the two inter-
ferometer arms and the interference of the E− fields from the two arms respectively. We note
the important result that with a symmetric optical system only the modulus of the polarization

transfer coefficients a+ and a− have any effect on the interference pattern — the phase shifts

between polarizations have no effect.

6 Interferometric visibility measurement

A general interferometric beam combiner and its associated detectors will output a set of discrete
intensity measurements {Ij : j = 1 . . . n} with a characteristic modulation in space or time which
encodes the fringe visibility. We assume that the complex fringe amplitude on a particular
baseline can be demodulated from the intensity measurements through a weighted sum (e.g.
using a discrete Fourier transform), expressed as

A(ui, vi) =
n
∑

j=1

wijIj , (8)
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where (ui, vi) is the angular frequency of the sinusoidal component of the sky brightness distri-
bution which is measured by interferometer baseline i and {wij : j = 1 . . . n} is a set of complex
weight factors. Denoting the total flux as

A(0) =
n
∑

j=1

w0jIj (9)

(where in most cases w0j = 1), we define the (uncalibrated) complex fringe visibility as

V (ui, vi) = A(ui, vi)/A(0) (10)

Now, each of the intensity measurements Ij can be expressed as

Ij = Ij,+ + Ij,− (11)

where Ij,+ and Ij,− are the intensities which would be measured when a pair of perfect polarizers,
chosen to select the characteristic polarizations of the interferometer arms, are placed in turn
in front of the fringe detector. By combining equations 8 and 11, we can express the measured
fringe amplitude as the sum of the fringe amplitudes in the two polarizations:

A(ui, vi) = A+(ui, vi) + A−(ui, vi) (12)

A(0) = A+(0) + A−(0) (13)

where the notation should be self-explanatory.

7 Evaluating the polarization fidelity of an interferometer

A polarization fidelity interferometer is one which gives the same complex visibility measure-
ment for a given S0(x, y) independent of the values of S1(x, y), S2(x, y) and S3(x, y). One
obvious example of a such an interferometer is an interferometer in which the state of polariza-
tion of the beams is unchanged after passing through the interferometer optics. In such a case
it is clear that the interferometer setup corresponds to measuring an intensity pattern in Stokes
S0. Any interferometer which gives the same visibility measurement as such a perfect inter-
ferometer is clearly a polarization fidelity interferometer. In this section we use evaluate the
polarization fidelity of an arbitrary interferometer by comparing it with the visibility measured
on the same source using a perfect interferometer.

In the case of a perfect interferometer it is easy to show that any two orthonormal Jones
vectors J+ and J− represent characteristic states of the interferometer optics. We can choose
these states to be the same two states which are the characteristic states of a given imperfect
interferometer (at a given moment in time — these states will in general change as the hour angle
of the source being observed changes). The only difference between the perfect interferometer
and the imperfect interferometer is then the fact that for a perfect interferometer the eigenvalues
a+ and a− are both exactly unity, whereas in an imperfect interferometer they are not.

It can be shown that we can analyze the light from an arbitrary partially polarized source
in terms of the second-order statistics of the instantaneous electric field measured in any two
orthogonal polarization states. Thus it is helpful to split the object being observed into two
images, denoted as S+(x, y) and S−(x, y) which correspond to the images which would be seen
through polarizers selecting the J+ and J− states respectively. In general these are some linear
combinations of the S0, S1, S2 and S3 images. We can consider the light in each of the two
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characteristic states passing separately through the interferometer optics and we see that the
corresponding fringe amplitudes observed in the two states are given by

A+(ui, vi) = |a+|
2S̃+(ui, vi) (14)

A−(ui, vi) = |a−|
2S̃−(ui, vi) (15)

where S̃(ui, vi) corresponds to the Fourier component of S(x, y) on a baseline (ui, vi). Combin-
ing equations 12, 14 and 15 we have

A(ui, vi) = |a+|
2S̃+(ui, vi) + |a−|

2S̃−(ui, vi) (16)

and we can similarly derive that

A(0) = |a+|
2S̃+(0) + |a−|

2S̃−(0) (17)

The measured fringe visibility is therefore given by

V (ui, vi) =
A(ui, vi)

A(0)
=

|a+|
2S̃+(ui, vi) + |a−|

2S̃−(ui, vi)

|a+|2S̃+(0) + |a−|2S̃−(0)
(18)

In order to quantify the polarization fidelity of a given interferometer we express the mea-
sured visibility relative to that which would be measured for the same source by a perfect
interferometer V0(ui, vi):

V (ui, vi)

V0(ui, vi)
==

|a+|
2S̃+(ui, vi) + |a−|

2S̃−(ui, vi)

|a+|2S̃+(0) + |a−|2S̃−(0)
×

S̃+(0) + S̃−(0)

S̃+(ui, vi) + S̃−(ui, vi)
. (19)

We define the diattenuation D of an optical system as the fractional difference in transmission
of the two states

D =
|a+|

2 − |a−|
2

|a+|2 + |a−|2
, (20)

where we have adopted the convention that |a+| ≥ |a−|. A little algebraic manipulation yields
the visibility relative to a perfect interferometer in terms of the diattenuation:

V (ui, vi)

V0(ui, vi)
=

1 + D
{

S̃+(ui,vi)−S̃
−

(ui,vi)

S̃+(ui,vi)+S̃
−

(ui,vi)

}

1 + D
{

S̃+(0)−S̃
−

(0)

S̃+(0)+S̃
−

(0)

} . (21)

This equation is the main mathematical result of this memo. We identify the term
{

S̃+(ui, vi) − S̃−(ui, vi)
}

as a Fourier component of the polarization difference image

{S+(x, y) − S−(x, y)}, while
{

S̃+(ui, vi) + S̃−(ui, vi)
}

is a Fourier component at the same fre-

quency of the unpolarized flux S0(x, y). Thus the ratio of the two can be thought of as a
“Fourier percentage polarization”. The corresponding term in the denominator which is the
same expression evaluated for the “zero spacing”, i.e. the total flux.

8 Practical examples

For the particular case of an unpolarized source we have S+(x, y) = S−(x, y) = 1
2S0(x, y) and so

a visibility measurement gives V (ui, vi) = V0(ui, vi) which leads to the important result that for
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an unpolarized source, we measure the same visibility independent of the interferometer optics

polarization properties. This is of particular relevance for calibration of visibility measurements:
most calibrators will be normal stars and will not be very resolved, so the object polarization
will be low (typically << 1 percent). As a result, when deriving the effects of interferometer
polarization on a calibrated visibility measurement, we only need to consider the polarization
properties of the optics when observing the source (which potentially is significantly polarized),
and not those when observing the calibrator.

In general the Jones matrix M of an interferometer will be rather complex to analyze, but we
can restrict analysis to a few simple cases, with the hope that these are indicative of the general
behavior. The most obvious simplification is to only analyze interferometer geometries for which
the linear polarization states are the eigenstates. This is particularly easy to interpret in terms
of the source polarization, since for most astronomical observations at optical wavelengths,
processes giving rise to linear polarization are dominant over processes giving rise to circular
polarization.

If the beam relay geometry is horizontal and planar, then the beam relay eigenstates are
the horizontal and vertical linear polarization states. If the unit telescopes are pointing in
directions such that the S and P directions for any oblique reflections within the telescope are
the same as those for the rest of the beam train, then the horizontal and vertical polarizations
are eigenstates for the entire system. For the articulating tertiary telescope design (shown in
figure 1) this will occur for any orientation of the inner rotation axis (i.e. the “pitch axis”),
provided that the outer gimbal (i.e. the one which rotates about the “roll axis”) is horizontal.

For the interferometer beam relay and combination optics the angle of incidence of the
starlight beam on the optics is less than or equal to 30 degrees, and for such angles the diatten-
uation for silver coated surfaces is small (< 0.5 percent), so we consider here only the oblique
reflections in the unit telescopes, which potentially have larger angles of incidence. Calculations
by Chris Haniff show that, for the articulating tertiary with a silver-coated tertiary mirror, the
diattenuation is less than 1 percent when observing sources above 30 degrees elevation for all
wavelengths longer than about 800nm. For observations at 600nm and extreme angles, the diat-
tenuation rises to slightly over 2 percent, so we will use 2 percent as a worst-case diattenuation
for illustration purposes.

The percentage linear polarization of the source enters into both the numerator and the
denominator of equation 21. The [S+(0) − S−(0)] / [S+(0) + S−(0)] term in the denominator
refers to the “zero spacing” polarized flux i.e. the polarization integrated over the seeing
disk. For almost all astronomical sources, this polarization at most a few percent at visible
wavelengths, and so the denominator is unity to better than a few parts in 104; we take it to
be unity for the rest of this discussion.

The [S+(ui, vi) − S−(ui, vi)] / [S+(ui, vi) + S−(ui, vi)] term in the numerator, which depends
on the polarization at high spatial frequencies, is less easy to estimate a priori since such
properties have not been measured extensively. Sources are expected to be more polarized on
small angular scales than they are on larger scales, but little theoretical work has been done
on the expected polarization structure on milliarcsecond scales. We shall use here two “toy”
astronomical models and examine the worst-case effects on the polarization fidelity.

The first model is a simple starspot model, consisting of a uniform unpolarized disk and an
unresolved spot which emits 10 percent of the flux of the star and is 100 percent linearly polar-
ized in a direction which happens to match the J+ characteristic polarization of the interferome-
ter. On short baselines which do not resolve the disk, [S+(ui, vi) − S−(ui, vi)] / [S+(ui, vi) + S−(ui, vi)]
is of order 10 percent, so the fractional error in the visibility is typically of order 0.2 percent.
On long baselines where the disk is fully resolved, the visibility of the spot dominates, and
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Figure 1: Layout of an articulating-tertiary telescope showing the orientation of the pitch and
roll axes. For an interferometer unit telescope, the collimated beam exits through the roll axis.
The diagram shows the CAT telescope (diagram courtesy of ESO).

so S−(ui, vi) ' 0. This yields fractional errors in the measured visibility of order 2 percent.
However, the fringe visibility on these baselines is of order 10 percent, so the actual visibility
errors are of order 0.2 percent.

A second, more extreme, model consists of a binary star in which one star is 100 percent
linearly polarized in the J+ direction and the other star is equally bright and 100 percent
linearly polarized in the J− direction. In such a case, the fringe contrast measured by a perfect
polarization-fidelity interferometer will go to zero when the projected baseline is such that
S+(ui, vi) = −S−(ui, vi). On this baseline, the fractional visibility error of any imperfect
interferometer is infinite. However, any error due to polarization leakage must be compared to
other potential sources of error. Error sources such as photon noise give rise to measurement
errors which are finite when the fringe visibility is zero and so ultimately we need to consider
the absolute as well as fractional visibility errors.
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For the example being considered here, the absolute visibility can be computed by evaluating

V (ui, vi) =

(

S̃+(ui, vi) + S̃−(ui, vi)

S̃+(0) + S̃−(0)

)







1 + D
{

S̃+(ui,vi)−S̃
−

(ui,vi)

S̃+(ui,vi)+S̃
−

(ui,vi)

}

1 + D
{

S̃+(0)−S̃
−

(0)

S̃+(0)+S̃
−

(0)

}






(22)

= V0(ui, vi) +
D
{

S̃+(ui, vi) − S̃−(ui, vi)
}

S̃+(0) + S̃−(0)
(23)

where we have made use of the fact that S̃+(0) = S̃−(0) (although this condition holds approx-
imately for most cases of astronomical interest, it holds exactly here). In the case of the binary
star, evaluation of equation 23 shows that the absolute visibility error is 2 percent. Astronom-
ical sources with this polarization structure are rather unlikely to occur in nature so this can
be seen to be a very pessimistic upper bound.
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