The MROI fast tip-tilt correction and target acquisition system

John Young1
D. Buscher1, M. Fisher1, C. Haniff1, A. Rea1, E. Seneta1, X. Sun1, D. Wilson1
A. Farris2, A. Olivares2, R. Selina2

1University of Cambridge
2New Mexico Institute of Mining and Technology

July 2012
Outline

1. Introduction
2. Design Description
 - Optical design and layout
 - Opto-mechanical design
 - Thermal design
 - Electronics design
 - Software design
3. Laboratory Tests
 - Camera readout testing
 - Opto-mechanical testing
4. Conclusions

July 2012
MROI fast tip-tilt system
System Role

- One system per UT, mounted on Nasmyth optical table
- Uses “visible” light 350–1000 nm; other colours sent to beam-combining laboratory
- Fast tip-tilt correction using UT actuated secondary mirror
 - Tip-tilt zero point on FTT camera defined at start of night as part of interferometer automated alignment
- Narrow-field (60″) target acquisition
- Integrated with MROI supervisory control system
Key Requirements

- Acquisition and fast tip-tilt correction modes
- **Limiting sensitivity** $\geq 16^{th}$ magnitude
- **Zero-point stability** $\leq 0.060''$ on sky for $\Delta T = 5$ °C
- $T - T_{\text{ambient}} \leq 2$ °C for components on Nasmyth optical table; power consumption < 250 W
- Time-varying objective point for dispersion compensation and/or off-axis reference star
- Continuous streaming of diagnostic data to ISS
Design Overview

[Diagram showing the MROI fast tip-tilt system]

- Telescope beam
- Corner-cube reflector mount
- ECF alignment beam
- Dichroic mount
- Focusing optic
- Detector
- Tip-Tilt Control System HW & SW
- Local Archive
- Laptop
- FIT Actuator Controller
- ISS Data Collector
- Unit Telescope Mount
- ISS

July 2012 MROI fast tip-tilt system 5
• Transmissive design with custom cemented triplet lens
 • Angular stability tolerance $20 \times$ that for OAP mirror
 • Temperature-dependent focal length compensates for expansion of steel table top
Opto-mechanical design (i)

- Monolithic, symmetric mounts
- “Material compensation” to keep lens centred in its mount
- Construct mounts from Aluminium alloy to minimize thermal equilibration time
 - Costs of invar not justified, worse thermal conductivity almost cancels lower CTE
Opto-mechanical design (ii)

- Common baseplate to mitigate effects of Nasmyth table deformations
- Separate camera mount to avoid transmitting heat and vibration to optics
- Baseplate and camera mount have kinematic interfaces to Nasmyth table to accommodate differential expansion
• Camera thermal enclosure:
 • Maintains camera above 0 °C and non-condensing, surface temperature within 2 °C of ambient
 • Uses convenient electronics cabinet cooling loop
 • Mechanically isolated from camera mount
• In UT enclosure electronics cabinet:
 • Rack-mount PC
 • Andor camera interface PCI card
 • Analogue/digital to fast tip-tilt mirror controller
 • EMCCD Peltier power supply
 • $2 \times$ USB Labjack analogue/digital I/O
 • Each includes I^2C bus to temperature and humidity sensors
 • Custom interface circuit board
 • Power supply
Software components

- **Environment controller** Thermal control/monitoring of camera enclosure
- **System controller** Hard real-time fast tip-tilt loop closure, target acquisition
- **Control/display GUI** Live image/monitor data display, data recording
- **Analysis GUI** Data visualization and analysis
System controller real-time architecture

- Based on Xenomai — kernel-space and user-space hard real-time contexts that coexist with Linux
- Open-source Andor driver modified to provide parallel real-time access to pixel data
- Uses floating point in user-space real-time context
Camera readout testing

- We have measured frame rate, latency, noise for preliminary 23×23 pixel custom readout mode
- Andor are developing a 32×32 pixel version
 - Larger FoV to accommodate field rotation when using off-axis reference object
 - Andor report 1 kHz frame rate and ~ 1 ms latency
 - Latency is consistent with our model for the readout timing
- We have measured total interrupt and compute latency as insignificant 38 μs
Individual component testing

<table>
<thead>
<tr>
<th>Element</th>
<th>Degree of freedom</th>
<th>Measured motion</th>
<th>Required stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dichroic/mirror mount</td>
<td>Piston stability</td>
<td>100 nm</td>
<td>< 500 nm</td>
</tr>
<tr>
<td>Dichroic/mirror mount</td>
<td>Tilt stability</td>
<td>≤ 100 nm</td>
<td>45 nm</td>
</tr>
<tr>
<td>Lens mount</td>
<td>Shear stability</td>
<td>≤ 250 nm</td>
<td>~ 350 nm</td>
</tr>
</tbody>
</table>

July 2012 MROI fast tip-tilt system
• R is reference beam port
• 1 & 2 are intermediate test ports
• 3 is output port to FTT camera
• Large excursions when ΔT between optical table top and bottom skins changes rapidly

• At other times, for several-degree temperature changes, motion is $\sim 2 \times$ requirement
Conclusions

- Prototypes of critical system components have been built and tested
- Laboratory test results validate design approach
 - Optomechanical stability within (at least) factor 2 of demanding requirements already demonstrated
 - Preliminary test results predict 43 Hz closed loop bandwidth
- Final design and fabrication of first system underway
- Preliminary version of real-time control software complete and working

July 2012

MROI fast tip-tilt system