The MROI fast tip-tilt correction and target acquisition system

John Young¹ D. Buscher¹, M. Fisher¹, C. Haniff¹, A. Rea¹, E. Seneta¹, X. Sun¹, D. Wilson¹

A. Farris², A. Olivares², R. Selina²

¹University of Cambridge ²New Mexico Institute of Mining and Technology

July 2012

- 1 Introduction
- 2 Design Description
 Optical design and layout
 Opto-mechanical design
 Thermal design
 Electronics design
 Software design
- 3 Laboratory Tests
 Camera readout testing
 Opto-mechanical testing
- 4 Conclusions

- One system per UT, mounted on Nasmyth optical table
- Uses "visible" light 350–1000 nm; other colours sent to beam-combining laboratory
- Fast tip-tilt correction using UT actuated secondary mirror
 - Tip-tilt zero point on FTT camera defined at start of night as part of interferometer automated alignment
- Narrow-field (60") target acquisition
- Integrated with MROI supervisory control system

- Acquisition and fast tip-tilt correction modes
- Limiting sensitivity $\geq 16^{th}$ magnitude
- Zero-point stability $\leq 0.060''$ on sky for $\Delta T = 5~^\circ C$
- $T T_{ambient} \le 2$ °C for components on Nasmyth optical table; power consumption < 250 W
- Time-varying objective point for dispersion compensation and/or off-axis reference star
- Continuous streaming of diagnostic data to ISS

Design Overview

5

Optical design and layout

MEXICO TECH

- Transmissive design with custom cemented triplet lens
 - Angular stability tolerance $20 \times$ that for OAP mirror
 - Temperature-dependent focal length compensates for expansion of steel table top

Opto-mechanical design (i)

- Monolithic, symmetric mounts
- "Material compensation" to keep lens centred in its mount
- Construct mounts from Aluminium alloy to minimize thermal equilibration time
 - Costs of invar not justified, worse thermal conductivity almost cancels lower CTE

- Common baseplate to mitigate effects of Nasmyth table deformations
- Separate camera mount to avoid transmitting heat and vibration to optics
- Baseplate and camera mount have kinematic interfaces to Nasmyth table to accommodate differential expansion

NEW MEXICO TECH

Thermal design

- Camera thermal enclosure:
 - Maintains camera above $0~^\circ C$ and non-condensing, surface temperature within $2~^\circ C$ of ambient
 - · Uses convenient electronics cabinet cooling loop
 - · Mechanically isolated from camera mount

MROI fast tip-tilt system

- In UT enclosure electronics cabinet:
 - Rack-mount PC
 - Andor camera interface PCI card
 - · Analogue/digital to fast tip-tilt mirror controller
 - EMCCD Peltier power supply
 - + $2 \times$ USB Labjack analogue/digital I/O
 - Each includes I²C bus to temperature and humidity sensors
 - Custom interface circuit board
 - Power supply

Software execution environment

- Environment controller Thermal control/monitoring of camera enclosure
- System controller Hard real-time fast tip-tilt loop closure, target acquisition
- Control/display GUI Live image/monitor data display, data recording
- Analysis GUI Data visualization and analysis

- Based on Xenomai kernel-space and user-space hard real-time contexts that coexist with Linux
- Open-source Andor driver modified to provide parallel real-time access to pixel data
- Uses floating point in user-space real-time context

- We have measured frame rate, latency, noise for preliminary 23 \times 23 pixel custom readout mode
- Andor are developing a 32 \times 32 pixel version
 - Larger FoV to accommodate field rotation when using off-axis reference object
 - Andor report 1~kHz frame rate and $\sim 1~ms$ latency
 - · Latency is consistent with our model for the readout timing
- We have measured total interrupt and compute latency as insignificant 38 μs

MAGDALENA RIDGE OBSERVATORY

Individual component testing

Element		Measured	Required
	freedom	motion	stability
Dichroic/mirror mount	Piston stability	100 nm	< 500nm
Dichroic/mirror mount	Tilt stability	\leq 100 nm	45 nm
Lens mount	Shear stability	\leq 250 nm	\sim 350 nm

Integrated testing

- R is reference beam port
- 1 & 2 are intermediate test ports
- 3 is output port to FTT camera

Integrated test results

- Large excursions when ΔT between optical table top and bottom skins changes rapidly
- At other times, for several-degree temperature changes, motion is $\sim 2\times$ requirement

AGDALENA RIDGE OBSERVATORY

NEW MEXICO TECH

- Prototypes of critical system components have been built and tested
- Laboratory test results validate design approach
 - Optomechanical stability within (at least) factor 2 of demanding requirements already demonstrated
 - Preliminary test results predict 43 Hz closed loop bandwidth
- Final design and fabrication of first system underway
- Preliminary version of real-time control software complete and working