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ABSTRACT

Fringe tracking in interferometers is typically analyzed with the implicit assumption that there is a single phase
associated with each telescope in the array. If the telescopes have apertures significantly larger than r0 and
only partial adaptive optics correction, then the phase measured by a fringe sensor may differ significantly from
the “piston” component of the aperture phase. In some cases, speckle noise will cause “branch points” in the
measured phase as a function of time, causing large and sudden jumps in the phase. We present simulations
showing these effects in order to understand their implications for the design of fringe tracking algorithms.

1. INTRODUCTION

A central component of any separated-element interferometer is the system which tracks and corrects the time-
varying phase differences between different apertures in the interferometer. Typically, these systems are called
“fringe trackers” because they measure the phase of an interference fringe pattern, and they measure and correct
only one spatial degree of freedom per aperture. This degree of freedom is commonly assumed to be simply the
“piston” mode of the wavefront error across the aperture, corresponding to the average wavefront error, and the
correction is applied using an actuator capable of introducing piston, for example a delay line.

Fringe-tracking systems have been operated successfully in interferometers such as the Mark III interferom-
eter1 and PTI,2 and indeed were critical to their scientific success. Both these interferometers had apertures
which were small compared with r0 at the operating wavelength, and this means that the approximation that
there was only one atmospheric spatial phase perturbation associated with each aperture was justifiable. The
latest generation of arrays such as CHARA,3 Keck Interferometer4 and VLTI,5 all have apertures which are
much larger than r0, and so it is important to consider what the effects might be of having significant (>1radian)
perturbations across the apertures of each telescope.

Earlier investigations by Tubbs6,7 showed that, in multi-r0 interferometers with beam combiners incorporating
spatial filters, the interaction between the focal plane “speckles” and the spatial filter gave rise to substantial
differences between the piston component of the wavefronts and the phase of the wavefront transmitted through
a spatial filter. Studies by G. Daigne (private communication) showed that the combination of spatial wavefront
errors and diffraction effects in the interferometric beam train could give rise to substantial phase anomalies
between the piston phase and the phase as measured in an interference fringe.

Here we tackle the question as to how and why spatial wavefront corrugations can give rise to differences
between the piston phase and the phase measured by a beam combiner. We show that these effects are quite
general to all multi-r0 interferometers and can arise whether or not diffraction or spatial filtering are present in the
instrumental setup. We investigate briefly how spatial filtering and adaptive optics affect the character of these
phase anomalies, in order to understand how best to design interferometers and their associated fringe-tracking
systems.
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2. MEASUREMENT MODEL

We adopt here a simple model of an interferometer which is nevertheless capable of exhibiting the effects of
spatial perturbations. The interferometer consists of two telescopes with circular apertures of diameter D ob-
serving a distant unresolved source. The stellar wavefronts pass through an atmospheric phase screen containing
Kolmogorov-Tatarski spatial phase perturbations with Fried parameter r0, and the phase screen is assumed to
evolve with time as predicted by the Taylor hypothesis, with a single phase screen moving at velocity v across
the apertures — more complex models with multiple layers moving in different directions were not considered
here. The apertures are modeled as being sufficiently far apart that the phase screens over each aperture are
uncorrelated, but that the wind velocity and direction are the same for both apertures.

The telescopes each have an adaptive optics (AO) system. The AO is modeled as a perfect modal filter,
which is to say that the first n Zernike modes (excluding piston) are removed from the wavefront. Values of n
from 2 to 20 are considered here, where case n = 2 corresponds to a tip/tilt correction system while n = 20
corresponds to a fifth-radial-order system.

The wavefronts from the telescopes are modeled as propagating without diffraction or further degradation
to a fringe-tracking sensor. For the purposes of this paper, the sensor is modeled as a beam combiner which
makes a quasi-monochromatic fringe pattern and uses the phase of the detected fringes as a measure of the
piston difference between the two telescopes. Phase changes of more than one wavelength are assumed to be
tracked using “phase unwrapping” techniques, i.e. following the phase evolution with time and resolving any 2π
ambiguities in the phase by assuming that the phase changes are continuous with time. We make no attempt here
to model beam combiners with multiple spectral channels or using envelope or group-delay tracking methods,
but we consider the implications of such methods in the discussion.

Two sorts of beam combiner are considered. For an “unfiltered” combiner, the wavefronts from the two
telescopes are overlapped in either the pupil or the image plane, and fringes are detected either through spatial
and/or temporal modulation of the fringes. All the light collected by the telescopes is detected: no spatial
filtering takes place.

In a “spatially filtered” combiner, the wavefront is subject to spatial filtering either before or after beam
combination (we assume that the spatial filter is identical for both beams, so whether filtering occurs before or
after combination makes no difference to the resulting signal). Two forms of spatial filtering are modeled: in
“pinhole” spatial filtering we assume that a pinhole is placed in a focal plane somewhere in the optical system,
so that only light from the central speckle can pass through. The diameter of the pinhole is assumed to be much
less than λ/D where λ is the wavelength of the radiation being observed (in practice a pinhole diameter which
is approximately λ/D is to be preferred at low light levels,8 but the approximation of an infinitely small pinhole
used here simplifies the mathematics considerably).

In “fiber” spatial filtering, we assume a single-mode fiber or other mono-mode waveguide is used to spatially
filter the wavefront. The mode accepted by the filter is assumed to be Gaussian-shaped and the f-ratio of the
optical system coupling the light from the aperture into the waveguide is assumed to be such that the diameter
of the contour of the far-field mode profile where the mode amplitude drops to 1/e of the peak amplitude is 0.9
times the aperture diameter, corresponding to optimal coupling to the aperture.9

Fringe detection is assumed to be noiseless, i.e. the source is bright so there is no detector or photon noise,
so that any errors in the measured phase arise purely from atmospheric distortions.

3. SIMPLIFIED ANALYSIS

In this section we attempt to gain some insight into what is measured by an idealized fringe sensor and why
and under what circumstances this differs from the piston component of the wavefront. We consider only the
unfiltered combiner and the pinhole-filtered combiner, since analysis of the fiber-filtered combiner is more complex
and does not yield any qualitatively new insights.

If we consider the fringes formed by an unfiltered beam combiner (whether pupil-plane or image-plane), it is
straightforward to show10 that the measured fringe pattern can be characterized by a complex fringe amplitude
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given by

A =

∫

S

ei[φ1(x)−φ2(x)] dS (1)

where φ1(x) and φ2(x) are the phase perturbations at position x within apertures 1 and 2 respectively (we define
the coordinate systems separately for the two apertures such that the value of x represents the position with
respect to the center of the relevant aperture), dS is an elemental within the aperture and the integral over S
denotes integrating over the clear area of the aperture. It is similarly straightforward to show that, for a filtered
combiner, the measured fringe complex amplitude is given by

A = A1A
∗

2 (2)

where A1 is the complex amplitude of the beam from aperture 1 after it has been spatially filtered. In the case
of an infinitely small pinhole spatial filter A1 is given by:

A1 =

∫

S

eiφ1(x) dS , (3)

so that

A =

∫

S

eiφ1(x) dS

∫

S

e−iφ2(x) dS (4)

In both the filtered and unfiltered cases the measured phase will be the argument of the measured complex
fringe amplitude A. We can compare this with the expression for the piston component of the wavefront across
each of the apertures. The piston component of the phase across aperture 1 will be given by:

Φ1 =

∫

S

φ1(x) dS (5)

and the piston difference between the apertures will be given by

Φ = Φ1 − Φ2 =

∫

S

φ1(x) − φ2(x) dS (6)

It is readily apparent that, while there is some similarity between, for example, equation 6 and the phase of
the complex amplitude given in equation 1, it is by no means obvious that they should in general give the same
answer.

However, it is clear that they do measure the same quantity in the limit of no phase fluctuation across the
aperture, and it is also possible to derive the relationship between the two for the case when there are only small
amounts of phase perturbations. If the phase is approximately constant across the aperture such that

φ1(x) = φ1 + δφ1(x) (7)

φ1(x) = φ2 + δφ2(x) (8)

where δφ1(x) << 1 and δφ2(x) << 1, then we can do a Taylor expansion of the complex exponentials in the
above expressions. For example, we can derive from equation 3 that

A1 ≈ eiφ1

[

1 − 1

2

∫

S

{δφ1(x)}2
dS + i

∫

S

δφ1(x) dS − i

6

∫

S

{δφ1(x)}3
dS

]

(9)

and by considering the real and imaginary components of the term in the square brackets, we can see that the
phase of this quantity is given approximately by

arg(A1) ≈ φ1 +

∫

S
δφ1(x) dS − 1

6

∫

S
{δφ1(x)}3

dS

1 − 1
2

∫

S
{δφ1(x)}2

dS
(10)
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(a) (b) (c)
Figure 1. (a) A complex amplitude summation in the complex plane, showing a low amplitude resultant phasor (b) Two
possible subsequent evolution paths (shown as dotted lines) ending up at the same resultant phasor (c) The corresponding
phase evolution showing a phase “branch point”. The principal value of the phase is plotted, i.e. the phase jumps between
+π and −π to keep the value within range.

We can see that, to first order in δφ1, the phase of A1 is indeed equal to the piston phase. Furthermore, the
deviation between the piston phase and the argument of the complex amplitude will scale approximately as δφ3.

We can derive similar results for the phases of the filtered and unfiltered fringes, namely that the fringe
phase accurately represents the piston phase when the instantaneous phase fluctuations across the aperture are
small when compared to a radian, but that as the phase fluctuations approach a radian, there will be a rapid
divergence between the piston phase and the measured fringe phase.

When the aperture phase deviations δφ become large compared to a radian, it is possible for large divergences
between the fringe phase and the piston phase to appear. What is more, these divergences can give rise to behavior
which can be termed chaotic, by which we mean that relatively small changes in the distribution of phase values
in the aperture can give rise to large differences in the final outcome.

To see this, let us consider the wavefront across an aperture at two instants in time, which are separated by
an interval which is small compared to D/v, the time taken for the wind to sweep the phase screen across the
aperture. At any one instant we can treat the integral across the aperture in equation 3 as the limit of a sum of
phasors in the complex plane. If the range of phase values is large compared to a radian, we can end up with
the resulting sum being of small amplitude, i.e. close to the origin of the complex plane as shown in Figure 1(a).

The low modulus corresponds to an instant of low Strehl ratio in the focal plane image, but at the same
time corresponds to a regime of extreme sensitivity of the phase to small perturbations. For example, at a time
∆t << D/v later, the distribution of phases across the aperture will have changed by only a small amount: if
the Taylor hypothesis holds, approximately 1−∆tv/D of phasors will be identical and only the fraction v∆t/D
of the phasors will be different. If we track this small change in time, then two possible evolutionary paths are
shown Figure 1(b). It can be seen that two small and nearly identical evolutionary histories for the aperture
phases give two very different tracks in the fringe phase as shown in Figure 1(c), despite the fact that the piston
phase ends up at the same point.

We can see from this example that it is possible under conditions of large phase perturbations to generate
rapid “jumps” in the fringe phase which are not seen in the piston phase. Furthermore, these jumps can cause a
2π “wrap around” in the fringe phase which will confuse any “phase unwrapping” algorithm in a similar to the
phase “branch points” seen in 2-D phase maps.

In summary then, we have shown that the piston phase and fringe phase will track each other closely if
the instantaneous phase perturbations across the aperture are small compared with a radian, but that large
differences can appear as the fluctuations approach and exceed a radian.
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4. SIMULATIONS

4.1 Simulation method

In order to demonstrate these effects numerically, a computer simulation of the interferometer model was set
up. Kolmogorov-Tatarski phase screens were generated on a regular grid by Fourier-transforming filtered white
noise.10 The grid sampled the phase at intervals of r0/6 or less and the grid extent was typically greater than
160r0. Time series of Taylor screens were generated by “sliding” the telescope aperture across the phase screen,
interpolating the phase screen onto a regular grid in the aperture plane. It was possible to generate long non-
repeating sequences of aperture phase snapshots by setting the “wind” velocity vector at 30◦ to the grid axes
and “wrapping” round when the aperture reached the edge of the phase screen (this makes use of the cyclic
edge-to-edge continuity of the Fourier-generated phase screens). Statistically independent phase screens were
used for each of the apertures.

Adaptive optics was simulated by projecting out Zernike modes from the aperture phases and subtracting
these modes. Three different beam combiners were simulated: an unfiltered beam combiner, a pinhole combiner
(with an infinitely small pinhole) and a fiber combiner. Time series of the complex fringe amplitudes measured
by these combiners were generated, together with, in the case of the filtered combiners, the complex amplitudes
of each of the filtered beams. The piston phase for each aperture was calculated as well as a modified version of
the piston phase with a Gaussian weighting across the aperture. The latter was used as a comparison with the
fiber-filtered fringe data, so that effects due to the aperture weighting of the fiber could be eliminated, i.e. at
small D/r0 this modified piston phase and the fiber phase should converge rapidly to one another.

4.2 Phase jumps

Figure 2 shows the output of one of the simulations. It shows a system with D/r0 = 4 and tip/tilt correction,
where the mean Strehl ratio is greater than 0.3. Nevertheless, the Strehl ratio shows frequent “dropouts” to
much lower values; this is due only to the statistical nature of the phase fluctuations as a perfect tip/tilt system
has been modeled.

For most of the time, the fringe phase tracks the piston phase to much better than a radian, but on some (but
not all) of the occasions where the Strehl in one aperture or another falls to a low value, the phase measured by
the beam combiner shows large “jumps” where the measured phase differs from the piston phase by more than
a radian. These jumps are fast: the time axis is plotted in units of r0/v, and so for D/r0 = 4 we see that, as
expected from “aperture filtering”, the piston phase shows no structure on timescales of less than 4 units, while
the phase jumps occur on timescales of 1-2 units.

This observation follows what is expected from the previous analysis: when the Strehl is low, the measured
phase can change rapidly and by large amounts. Note that the Strehl being low does not inevitably lead to
large phase jumps, since the combination of low Strehl and a suitable subsequent evolution of the aperture phase
distribution are needed to cause large phase fluctuations.

The combination of low Strehl and fast fluctuations represents a double challenge for a fringe tracker, because
the low Strehl ratio implies that the signal-to-noise ratio on a fringe measurement is reduced. At the same time,
the phase is changing rapidly, so the tracker must sample fast to keep up. Even if the tracker is able to meet
these stringent requirements, we can see that it will still perform less than adequately on some occasions: in
the first large jump in phase seen in Figure 2, we can see that the phase difference between the fringe-tracker
phase and the piston phase wraps through 2π radians (i.e. we have gone through a “branch point”), so the fringe
tracker will end up one fringe off the fringe it was initially following. If these jumps continue, the tracker could
eventually end up losing the fringe packet altogether.

The frequency of such large jumps depends on the D/r0 value for the aperture. At D/r0 = 4 such jumps
are seen in almost every sequence of the length shown in Figure 2: for typical values at visible wavelengths of
r0 = 10cm and v = 10m/s this correspond to timescales of order 1 second. For lower D/r0 values, the rate of
such jumps fall dramatically, such that at D/r0 = 3 much longer sequences are required to see the jumps. A
statistical analysis of the rate of these jumps as a function of aperture size will be the subject of a later paper.

It might be argued that the fact that the fringe tracker does not follow the “piston phase” is irrelevant, because
what is important that we follow the phase seen by the science camera. However, if the science camera is at
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Figure 2. Simulated time-sequences for an interferometer with tip/tilt correction and D/r0 = 4. The top graph shows the
measured piston phase, which shows the smoothing expected from “aperture filtering”. Below it is the difference between
the piston phase and the phase measured with a fiber-filtered beam combiner. The bottom graph shows the Strehl ratios
seen at each of the two telescopes, shown as solid and dashed lines respectively. It can be seen that there are occasional
large phase “jumps” associated with periods of low Strehl.

a different wavelength to the fringe tracker, then due to the non-linear nature of the phase jump phenomenon,
the phase jumps seen in the science camera and the fringe tracker are only weakly correlated. Figure 3 shows
a simulation where the wavelength ratio between the science camera and fringe tracker is only 1.5 (it does not
matter which way round the ratio is for the purposes of this analysis), and yet the phase jumps seen at one
wavelength are rarely mimicked at the other wavelength.

4.3 Spatial filtering

An interesting question to ask is whether or not spatial filtering improves or makes worse the differences between
the piston phase and the measured phase. The implication from Tubbs’ work7 was that spatial filtering might
in fact be the source of the anomalies, but we have already shown that this is not the case.

As we have seen, the phase anomalies are associated with non-linear effects which occur when the the variation
of the phase of the complex exponentials in equations 1 and 4 become comparable to a radian. It can be readily
shown that the instantaneous variation of the imaginary argument to the exponential for the unfiltered combiner
(equation 1) will typically be larger by a factor of order

√
2 than that for the for the filtered combiner (equation 4),

and therefore we expect the unfiltered combiner to be more likely to be affected by phase anomalies than the
filtered combiner: phase jumps correspond to the infrequent realizations in the “tail” of the set of possible
instantaneous aperture phase distributions, and the chance of the instantaneous fluctuations approaching or
exceeding a radian is significantly greater for the unfiltered combiner. The fact that there are two “chances”
(one for each integral in equation 4) to have an unusual distribution in the case of the filtered combiner does not
make up for the greater probability of a large-variance event in the unfiltered combiner.
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Figure 3. Simulated phase sequences seen in two beam combiners operating at different wavelengths. The upper sequence
(offset for clarity) is for a combiner operating at a D/r0 value of 3, while the lower sequence is for a wavelength a factor
of 1.5 times smaller. We can see that the magnitude of the phase jumps at different wavelengths rarely if ever exhibit
the ideal ratio of 1.5 and hence fringe tracking at one wavelength will not perfectly track the phase jumps at another
wavelength. The system has tip/tilt correction only.
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Figure 4. A comparison of the phases measured by a pinhole-filtered beam combiner (top) and an unfiltered beam combiner
(bottom), made using the same wavefronts. The simulated value of D/r0 is 4, and the system is tip/tilt corrected.

The simulation bears out this analysis: Figure 4 shows that the phase jumps are both larger and more
frequent in the unfiltered combiner than in the filtered combiner.

4.4 The effect of adaptive optics

The analysis presented earlier indicates that it is the size of the spatial fluctuations that determines the strength
of the anomalies seen between the phase measured by a fringe sensor and the piston phase. A higher-order AO
system operating on a given aperture size will therefore reduce the likelihood of seeing phase anomalies. However,
AO systems are typically sized to the aperture they will be used on, so a more interesting question is whether a
large aperture system with high-order AO is better than a small-aperture system with lower-order AO.

To first order, we expect that the AO system will be designed to give a certain minimum Strehl ratio for the
aperture/science wavelength combination it is being used with. Given that the Strehl is a monotonic function
of the RMS residual phase perturbations in the aperture, we might expect apertures with different orders of AO
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but the same Strehl to show similar phase-tracking anomalies. In fact, the simulations do not bear this out: the
mean Strehl ratio at which higher-order AO systems first exhibit frequent phase anomalies appears to be lower
than for their lower-order counterparts.

One possible explanation lies in the spatial structure of the residual phases: seen in the image plane, a higher-
order system of the same Strehl ratio will have a higher contrast between the central speckle and the speckle
“halo”. Examination of simulated image data at the moments when the large phase jumps are seen shows that
these occur when the central speckle disappears and gives its energy to a new speckle. The tip/tilt component
of the AO system will tend to recenter on the new speckle, making it the central speckle, which, at least in
a spatially-filtered system, then dominates the phase of the fringes. This new speckle will have a completely
different phase from the original central speckle and therefore give rise to a rapid jump in the measured phase.
The theory as to why higher-order systems are better would then have to invoke the fact that such a “speckle
exchange” event is far more unlikely in the higher-order case, because the chance of one of the subsidiary speckles
having comparable energy to the main speckle is finite. This needs to be investigated further to determine if this
theory provides a consistent explanation for all the phenomena observed.

5. DISCUSSION AND CONCLUSIONS

We have seen that discrepancies can arise between the phase measured by a fringe sensor and the piston phase,
and that these are a strong function of the level of phase corrugations across the aperture. These discrepancies
are often seen in the form of large and rapid phase “jumps” and they occur preferentially when the instantaneous
Strehl ratio or the fringe amplitude is small, making these jumps hard for the fringe tracker to follow. Indeed,
if the fringe tracker does follow these excursions, it may be doing the wrong thing, either because it will “phase
wrap” onto the wrong fringe, and/or will follow a phase excursion which is not seen at the science wavelength.

Both spatial filtering and adaptive optics help to reduce the level of such anomalies, but do not eliminate
them. The only way to completely avoid these anomalies is to work in a regime where these jumps are unlikely,
by selecting appropriate values for D/r0 and the spatial order of the AO system. In practice this is quite difficult
to do: while it is possible to adjust the effective aperture of the system appropriate to the prevailing value of r0

using a simple diaphragm, there are two problems with this approach. Firstly, for most AO systems it is difficult
to change the effective aperture size dynamically and still maintain the same spatial order of correction, because
this involves rescaling the spatial resolution of both the wavefront sensor and the wavefront corrector to the new
aperture size. Secondly, it is quite difficult to maintain an optimum aperture size because of rapid variations in
the seeing. Measurements by Baldwin et al.11 show that, at least on one (quite good) site and at some times,
the spatial scale of the seeing can vary by factors of more than 2 on timescales of a few hundred milliseconds as
shown in Figure 5.

The above arguments suggest that all successful fringe trackers need to be able to deal with rapid phase
jumps. This requires development of robust fringe-tracking algorithms which either recognize the phase jumps
when they occur (perhaps this may be possible using auxiliary data from the AO system?), or recover rapidly
from the loss of fringe lock that may result. An alternative is to use algorithms that are inherently insensitive
to rapid phase variations. An example is group-delay fringe tracking or any similar algorithm which tracks the
coherence envelope of the fringes rather than the fringe phase. These algorithms tend to average the data over
timescales of many tens of t0, so that infrequent and rapid anomalies in the phase will have little effect. These
algorithms have the additional advantage that they are little affected by short periods of poor seeing. However,
the investigation here has only been the effects on a phase-tracking system and not a group-delay system, and
so this is a fruitful area for future research.
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Figure 5. Example of rapid variations in the seeing from Baldwin et al.

11 (reproduced with permission of the authors).
The y-coordinate, fw70pcef, is a measure of the intrinsic seeing in arcseconds which is accurate to about 10% at any
instant. It can be seen that r0 changes by a factor of more than 3 over very short timescales, with some changes occurring
in less than a second.

REFERENCES

[1] Shao, M. and Staelin, D. H., “First fringe measurements with a phase-tracking stellar interferometer,” Appl.

Opt. 19, 1519–1522 (1980).

[2] Colavita, M. M., Wallace, J. K., Hines, B. E., Gursel, Y., Malbet, F., Palmer, D. L., Pan, X. P., Shao, M.,
Yu, J. W., Boden, A. F., Dumont, P. J., Gubler, J., Koresko, C. D., Kulkarni, S. R., Lane, B. F., Mobley,
D. W., and van Belle, G. T., “The Palomar Testbed Interferometer,” ApJ 510, 505–521 (1999).

[3] ten Brummelaar, T. A., McAlister, H. A., Ridgway, S. T., Bagnuolo, Jr., W. G., Turner, N. H., Sturmann,
L., Sturmann, J., Berger, D. H., Ogden, C. E., Cadman, R., Hartkopf, W. I., Hopper, C. H., and Shure,
M. A., “First Results from the CHARA Array. II. A Description of the Instrument,” ApJ 628, 453–465
(2005).

[4] Colavita, M. M., Wizinowich, P. L., and Akeson, R. L., “Keck Interferometer status and plans,” Proc. SPIE

(2004).

[5] Glindemann, A., Algomedo, J., Amestica, R., Ballester, P., Bauvir, B., Bugueño, E., Correia, S., Delgado,
F., Delplancke, F., Derie, F., Duhoux, P., di Folco, E., Gennai, A., Gilli, B., Giordano, P., Gitton, P.,
Guisard, S., Housen, N., Huxley, A., Kervella, P., Kiekebusch, M., Koehler, B., Lévêque, S., Longinotti, A.,
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