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ABSTRACT

We present the recent results in image reconstruction obtained with the University of Cambridge’s software
package BSMEM (BiSpectrum Maximum Entropy Method). We also evaluate the performance of BSMEM
reconstructions for several datasets susceptible to render the reconstruction process harder: with missing power-
spectrum or bispectrum points, low Signal-to-Noise ratio on visibility phases or visibility amplitudes, or problem-
atic source morphologies (important amount of resolved flux, centro-symmetry). Interferometer configurations
with 4, 6, 8 and 15 telescopes are examined.
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1. INTRODUCTION

Future interferometric instruments will benefit from increased uv coverage offered by new facilities (Magdalena
Ridge Observatory Interferometer, OHANA) or existing ones (simultaneous use of the ATs and the UTs at the
VLTI). Consequently, model-independent imaging from interferometric data, which quality heavily depends on
the uv coverage, is to become increasingly important in terms of scientific output.

The SPIE Interferometry Imaging Beauty Contests, which took place in 2004,1 20062 and 2008 have been
welcome opportunities to demonstrate that model-independent imaging can be powerful even at low SNR. The
majority of image reconstruction softwares rely on similar approaches (iterative process with minimization of a
criterion), even if the implementations may differ. Recent improvements in the field include the introduction of
a myopic model of the telescope aberrations3, 4 and the use of stochastic techniques such as Markov Chains.5

We present in section 2 Cambridge’s image reconstruction software, BSMEM, an implementation of the classic
Maximum Entropy Method. As BSMEM won the two first Beauty Contests and came second in the latest one, its
performance can be seen as representative of what image reconstruction softwares are currently able to achieve.

The Beauty Contest relies on simulated datasets to evaluate the candidates. While those datasets are certainly
not easy, quality images can be reconstructed without trouble. Real data may differ in that they may not allow
perfect images to be retrieved. To assess BSMEM’s robustness we conducted several simulations on various
representative difficult datasets, presented in section3. They encompass datasets with low uv coverage (as can
be found in facilities not primarily intended for imaging), low SNR or missing bispectrum points, as well as
potential issues arising from the source morphology (large amount of resolved flux or centrosymmetry).

We present the main results of these simulations in section 4 and we underline several key principles that
the observer should remember before using a model-independent image reconstruction software with such noisy
datasets.

2. BSMEM

Cambridge’s software package has been dubbed BSMEM to stand for BiSpectrum Maximum Entropy Method.
It was first written in 1992 to demonstrate image reconstruction from optical aperture synthesis data.6 It applies
a fully Bayesian approach to the inverse problem of finding the most probable image given the evidence, making
use of the Maximum Entropy approach to maximize the inference of an image. This approach, described in
section 2, is now classic in image reconstruction for optical and infrared interferometry. BSMEM is now available
freely to the interferometry community at http://www.mrao.cam.ac.uk/research/OAS/bsmem.html.
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Figure 1. BSMEM user-interface. From left to right: the main window, creation of a new starting model over the current
reconstruction, standard deviation of the posterior probability, and an OIPLOT window.

2.1 The algorithm behind BSMEM

2.1.1 A Bayesian approach

BSMEM reconstructs an image I from an OIFITS file which contains a set D of data points potentially composed
of complex visibilities, powerspectra, triple amplitudes, closure phases and their associated measurement noises.
For simplicity we will not consider the presence of complex visibilities in this paper. We only assume the
data to be composed of powerspectrum points

{
P1, P2, . . . PNpow

}
as well as triple amplitudes

{
T1, T2, . . . TNtrip

}

and closure phases {C1, C2, . . . CNclos
}. While the numbers of triple amplitudes and closure phases may not

match, when reading the OIFITS file BSMEM actually reforms complete bispectrum data {B1, B2, . . . BNbis
}

with Nbis = argmax{Ntrip, Nclos}. For each bispectrum point thus created, if either the corresponding closure
phase or the triple amplitude is missing, then BSMEM flags the point so that it may be treated appropriately
during further analysis. The noise is assumed to be Gaussian, and the OIFITS file contains the variances for all
measurements (e.g. σ2

Pn
, σ2

Tn
and σ2

Cn
).

BSMEM reconstruction algorithm is based on the Bayesian equation:

Pr(I |D) =
Pr(I) Pr(D|I)

Pr(D)
, (1)

where Pr(I |D) is the posterior probability density (also called inference), Pr(D|I) is the likelihood, Pr(I) the
prior, and Pr(D) the evidence. BSMEM uses an iterative method to maximize the posterior probability, in order
to obtain the most likely image constrained by the prior.

2.1.2 BSMEM likelihood

As we deal with Gaussian white noise, the likelihood is simply:

Pr(D|I) ∝ exp

[
−

χ2
D

(I)

2

]
. (2)

The first step toward computing χ2
D

is to derive all powerspectra Pn and bispectra Bn from the image I . This
is straightforward and will not be detailed here. Then χ2

D
is expressed as the sum of two least-square criteria on

the powerspectra and bispectra:

χ2
D

=

Npow∑

n=1

Jpow
n +

Nbis∑

n=1

JBis
n , (3)

with

Jpow
n =

(
Pn − P data

n

σPn

)2

, (4)
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Note that we do not use a simple χ2 on the bispectrum. The reason is that the noise statitics is Gaussian
on both its amplitude and phase, resulting in a banana-shaped noise cloud on the bispectrum itself. Using a
simple χ2 directly on the bispectrum would create a bias, and such a criterion would be tricky to minimize as it
is non-convex.

It can be shown that before comparison to the data, each tentative bispectrum vector Bn has to be rotated
by an angle equal to the opposite of the closure phase data. Then a convex approximation of the bispectrum
noise cloud can be realized by an elliptical cloud along the radial and tangential axis of the bispectrum data
point. The standard deviations on the radial and tangential parts of the bispectrum take the form:

σrad
n

2
=

1 + e−σ2
Cn

2
T 2

n +
1 + e−σ2

Cn

2
σ2

Tn
, (6)

and

σtan
n

2
=

1 − e−σ2
Cn

2
T 2

n +
1 − e−σ2

Cn

2
σ2

Tn
. (7)

In BSMEM those deviation are evaluated once, using the OIFITS data only (though it may be useful to update
their values when converging toward a solution). It can be shown that the elliptic approximation is not biased
radially as long as the triple amplitude is low compared to unity (which is nearly always the case). Note that
a similar approach has also been used recently by Meimon et al.,3 but for image reconstruction from complex
visibilities.

2.1.3 BSMEM prior

The regularization prior in image reconstruction is classically shown to take the form:

Pr(D|I) ∝ exp [αH(I)] , (8)

with α ∈ R so that maximising the inference becomes a problem of minimising the criterion:

J(I) = χ2
D

(I) − αH(I) , (9)

where is α is called the regularization constant and H the prior (or regularization function). The maximum a

posteriori image Ĩ reconstructed by BSMEM is then given by:

Ĩ = argmaxI∈RN J(I) . (10)

BSMEM uses the Maximum Entropy Method (MEM) and thus considers regularization functions which
measure the entropy of the image. Maximising the entropy ensures that the information contained in the
reconstructed image is the minimum available, while the likelihood term still imposes compatibility with the
data. While several entropy functions H are commonly used in the literature, and BSMEM currently only
implements the Gull and Skilling one:7

H(I) =
N∑

k=1

(Ik − Mk) − Ik log

(
Ik

Mk

)
, (11)

where M is a given prior image and the subscript k gives the value of the kth pixel. This entropy function can be
seen as the sum of two terms, one being the total flux difference between the reconstructed image and the model,
and the other a Kullback-Leibler divergence between image and model. In practise the model we use is either



a Gaussian, a uniform disk, or a Dirac centered in the field of view as those conveniently allow to artificially
fix the center of the reconstruction (the fit on the bispectrum and powerspectrum data is translation-invariant).
This type of starting models also acts as a support constrain by an penalising the presence of flux far from the
center of the image.

As Eq. 9 demonstrates, the balance between the χ2 and the entropy function depends on the hyperparameter
α. Choosing an adequate hyperparameter is sometimes a difficult task for the user and so BSMEM implements
an automatic Bayesian estimation of the hyperparameter. The prior Pr(α) is a cut-off Jeffreys prior and the
evidence Pr(D|α) is sampled to determine the most likely α. The reconstruction is then totally unsupervised
and J is minimised using the non-linear conjugate gradient method implemented in the MEMSYS library.8

2.2 Other BSMEM features

Since 1992 multiple improvements have been brought to BSMEM. It has partly been ported to C, has gained
compatibility with the OIFITS format,9 the number of reconstruction options and the user interface have been
improved and expanded. The latest version, described in this paper, includes a Python/GTK GUI and the
integration of the OIPLOT libraries from Thureau et al.10 with easy plot export and limited model-fitting
options. This version also has been streamlined so that new users may use it without prior knowledge of image
reconstruction: an automatic mode adjusts the reconstruction parameters such as the pixellation, the field of
view, the regularization constant and the starting model. There are several ways in BSMEM for the user to
define its starting model: by reading a bitmap file, by using a component description of the source, or even by
drawing it with the mouse directly over the current reconstruction.

A very useful new feature is the ability to sample the posterior probability distribution close to the recon-
structed image. This allows to compute statistics on a set of most probable images such as minimum/maximum
levels, mean image, median image or the standard deviation. This latter allows to assign error bars to each pixel
of the reconstruction, and thus to associate a level of confidence to the image features.

BSMEM is distributed under the LGPL license to any member of the interferometric community contacting
us.11 It can be compiled under Linux, Solaris, MacOS, Windows XP/Vista. As the BSMEM userbase is quickly
growing, a mailing list has recently been started.

Several paths are explored to further improve BSMEM performance, flexibility and usability. Among the stud-
ied options are the choice of several regularization functions (L1, L2, L1L2 norms, support constrains, multiscale
entropy regularizers), the explicit introduction of intrinsic correlation functions, and a bi-model approach with a
separated treatment of extended components and point sources. Support for any future additions to the OIFITS
format (e.g. possibly closure amplitudes) will also be added. Finally, support for multiwavelengths datasets with
the simultaneous reconstruction of several channels is also one of our primary goals.

3. SIMULATION SETUP

In theory BSMEM has several advantages over the old phase self-calibration procedures that used to be applied
in interferometry. The latter failed in most cases where the data was mostly composed of the powerspectrum
with only a very few bispectrum points, as it relied on the bispectrum and powerspectrum components sharing
common uv points. On the contrary BSMEM independently exploits the powerspectrum points, the triple
product amplitudes, and the phase closures and it can handle all types of data sparseness (such as the frequent
case of missing closures). The following simulations allowed us to verify the validity and usefulness of this
approach.

3.1 Fake data generation

Let us describe here the procedure which was followed to create of the fake data sets. First four different array
configurations have been used and are presented on figure 2. The first one is the well-known VLTI configuration
with four UTs telescopes, while others are configurations with more telescopes. Bootstrapping capability is a
strong advocacy for Y arrays, so such configurations are commonly considered for future interferometers. Here
the 6 telescope configuration is close to what could be obtained with the Magdalena Ridge Observatory Phase A.
The second generation VLTI instrument VSI is planned to get a 8 telescope configuration, and our 8 telescope



Figure 2. Array configurations, from left to right: VLTI configuration, Y configurations with 6 (MROI phase A), 8 (MROI
between phase A and B), and 15 telescopes (exhaustive coverage).
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Figure 3. The sources for the simulations. They were chosen to evaluate the potential of model-independent image
reconstruction on target with specific characteristics (resolved and unresolved, symmetric/asymmetric, with or without
extended components).

configuration reflects this point. Most interferometers are not especially designed with imaging in mind, so
the chosen configurations are not especially optimised for best imaging performance. On the contrary they are
meant to give average and representative results: as a result the uv plane is decently covered by the 6 and 8
telescope arrays but not completely. On the other hand, the 15 telescope case is meant to be the example of an
exhaustive coverage of the uv plane. This latter configuration allows to study the importance of the object shape
on reconstruction capabilities as the differences arising from the reconstruction process cannot be attributed to
a lack of uv coverage but to a genuine MEM behaviour with respect to the object. All Y configurations possess
maximum baselines of about 170 meters, which is slightly greater than the maximum baseline of the VLTI
one (about 130 m), but represents well the increased goals for next-generation interferometers. The reader will
understand that our goal was not to compare the VLTI to another array configuration of the same resolution,
but more to a state-of-the-art interferometer, and then determine in which cases the increased uv coverage would
bring major improvements.

To be consistent with existing instruments, all tests have been run in the near infrared bands (λ ' 1.0µm).
The typical baseline range for the simulated instruments was around 40 − 200m, thus approximatively defining
a practical limit between resolved (> 1.0 mas) and unresolved (< 0.1 mas) simulated objects. The simulated
observation strategy consisted in 16 acquisitions every 15 minutes, so 4 hours total time. During each acquisition
all available bispectrum and powerspectrum were measured.

Six test sources have been selected and are presented on Fig. 3. They are not meant to be representative of
real objects: they are difficult cases tailored to test the reconstruction behavior and understand the potential
shortcomings of BSMEM or similar programs (more realistic targets are analysed in the paper by Filho et al.
in these Proceedings). The flux levels were chosen to match those of a K=10 unresolved target. The amount of
resolved flux and symmetry of the source are expected to have a major influence on the performance.

From left to right in Fig. 3, source 1 is the simplest test case, an unresolved binary of flux ratio 1:5, separation
3 mas, which constitutes our reference “easy” source. Source 2 is a resolved binary of flux ratio 1:5, same size
0.5 mas (Gaussian functions), and separation 3 mas. Source 3 is a a typical source, a resolved stellar disk with
several resolved or barely resolved spots at its surface. Source 4 is a object composed of seven resolved (0.4 mas)
sources of different fluxes. With the brightest star taken as reference, the flux ratios are 50%, 20%, 10%, 5%,
2%, 1%. This test case allows very simply to check the photometric capability of the reconstruction. Source 5
is a simple example of a perfectly point-symmetric and resolved object. Finally source 6 is almost symmetrical,
except for a star component to test for cases where the symmetric part of the object is well reconstructed but
not the asymmetric one.



Once the test target has been selected, target visibilities are straightforwardly computed at all uv points
(given by the telescope configuration and the observation time). Then these visibilities are used to derive
the powerspectrum and bispectrum data. Noise is added to these last quantities. In practice we introduced
independently some noise on the visibility amplitudes and on the visibility phases. As expected long baseline
data had poorer SNR than shorter ones. The noise levels were defined as 0.2%, 2%, 5%, 10% and 20% for
the visibility errors, and 0.1◦, 1.0◦, 3.0◦, 6.0◦ and 12.0◦ errors for the closure phases on the shortest baselines.
For each telescope configuration and source, 50 fake observations were simulated, each differing by its noise
realization.

3.2 Reconstruction process

The pixellation of the reconstructed images was chosen equal to that of the source. The starting model for all
images was a default Gaussian function centered in the field of view, with a FWHM of 2.0 mas.

To evaluate the fidelity of a reconstructed image Î with respect to the source O, they were first aligned by
cross-correlation, then the Mean Squared Error was computed. When considering a whole data set, composed of
images only differing by their noise occurrences, the actual error was computed as the square root of the averaged
MSE. Several noise realizations were also needed to compute the standard deviation over a set (all parameters
fixed, the standard deviation of the individual errors measures the repeatability of the algorithm at a determined
noise level: this constitutes a good indicator of the confidence the user can have in the reconstruction at this
noise level; the lower the standard deviation, the more trustworthy the reconstruction is).

4. SIMULATION RESULTS

As we cannot publish here the reconstructions for all targets and all array configurations, the following sections
present only the most representative results. The reader is invited to download a complete report on those
simulations to BSMEM webpage,11 which contains a more detailed analysis of the simulations.

4.1 Performance with noise

Fig. 4 presents the reconstructions obtained on four sources for low, medium, and high noise on the visibility
amplitudes and closure phases.

At high and medium SNR on both noise parameters, BSMEM is always able to retrieve at least the main
features of all targets. Of course the better the uv coverage is, the better the reconstruction gets (see next
section), but both noises do also play major role. Reconstructions behave as expected: noisier data sets produce
poorer reconstructed images, and sources that exhibit extended components are more difficult to reconstruct at
high noise.

Let us consider the reconstructions corresponding to a constant noise level on the phase, e.g. 1◦. At high
SNR on the visibility amplitudes, BSMEM is initially able to reconstruct the image with fine details. Then as
the level of amplitude noise increases, there is a typical loss of details, and the reconstructions appear more and
more blurry. This is particularly visible on the “Symmetric stars” object (bottom right in each frame). While
the noise on the amplitudes remains low, both stars still appear well separated. As soon as the amplitudes get
noisier, their respective disks blend. Finally above a certain threshold the reconstruction of the target is not
possible anymore: the data is not informative enough to depart significantly from the starting model. Similarly
the spots on the “Star + spots” becomes increasingly difficult to distinguish.

The reconstruction behavior is different when the phase noise is increased while the amplitude noise is kept
constant. In this case, although the reconstructed image gets visibly noisier, this does not prevent the target from
being partially reconstructed (the algorithm does depart from the prior). The effect of noise on the reconstructed
images is also different: all features remains in the image and there is nearly no smoothing. However the images
are “spread” with visible noise artifacts inside the whole field of view.

The common interpretation is that the powerspectrum data determine the amount of flux in the reconstructed
image and the overall shape of the source while the closure phases constrain the flux localisation, allowing to
retrieve finer details. Noisier phases lead the reconstruction process into putting flux at the wrong locations,
explaining the noise repartition on the whole image. At worse the reconstruction proceed as if there was no
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Figure 4. Phase and amplitude noise effect on the reconstruction quality. Four sources are reconstructed for different
phase and amplitude noise images (objects 1, 3, 4, 5) are reconstructed 8 telescopes..

information on the phase, and then it is likely to retrieve a symmetrised version of the target. On the contrary
very noisy amplitudes with good closures prevent BSMEM from even retrieving the global shape of the target,
but the flux is still constrained within an area, creating a blurring effect.

Maybe quite paradoxally, as both noises alter the image in opposite ways, having more noise might improve
the visual quality of an image. For example, for high level of amplitude noise (20%), images with low phase noise
are less detailed than images with medium phase noise.

Our other simulations (not shown here) agree in that there is always a clear degradation of the confidence
level (the standard deviation of the reconstruction errors) when the visibility noise increases, while it reaches a
plateau for the phase noise.

Keeping fixed the amplitude noise level, there is also a threshold of phase noise under which the error stays
constant. This means that even good closure phases will not bring any improvement to image quality when the
powerspectrum are of poor quality.

4.2 Influence of the uv coverage

As Fig. 5 demonstrates, the 15 telescope uv coverage gives nearly perfect images, and point source targets are
particularly well rendered. In comparison, on other configurations a certain amount of ghost flux appears around
the stars, slowly increasing as the uv coverage gets worse. The stars themselves are not point-like anymore,
though both components can perfectly be distinguished and are of the correct flux ratio. This situation remains
unchanged on the resolved binary (note that other simulations show that high SNR phases are more important
than high SNR amplitudes in order to distinguish the weakest star).

The reconstruction of low level intensities is much harder with poorer uv coverage, as underlined by the
“star+spots” source reconstructions: BSMEM successfully manages to recover 5-7 of the 7 stars with 15 tele-
scopes, 4-7 with 8 telescopes, 3-7 with the 6 telescope one, and 3 to 4 for the 4 telescope one. As the star
fluxes follow a progression of 50%, 20%, 10%, 5%, 2%, 1% for this object, this roughly translates into doubled
reconstruction sensitivity when going from the 4 telescope array to the 6, 8 and finally to the 15 one.

It should be noted that high phase noise alone can severely degrade the performance of an array, even
decreasing its sensitivity down to the level of a smaller array. At the same level of noise on visibility amplitudes,
a 4 telescope array with high SNR closure phases can perform better than a 6 telescope one with low SNR. This
is a strong advocacy for decent SNR on closure phases and also reassuring for VLTI imaging using solely the
UTs.
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Figure 5. Evolution of the reconstructions with the UV coverage. These simulations were realised at medium SNR on the
amplitudes and phases.

Furthermore, even if true model-independent imaging is reputed to be difficult with only a 4 telescope array,
it should be noted that it generally succeeds in retrieving the main features of all targets. Model-fitting should
then allow to retrieve most of the scientific information. The “Star+spots” source is the one where this main
feature – the central background disk – is the faintest compared to its other components and where the major
improvement is brought by going from 4 to 6 telescopes. The 4 telescopes array can clearly reconstruct the
bright spots, but not the disk itself even at high SNR, while the 6 telescopes array can at medium SNR. Note
that this is not due to the greater uv coverage for the same amount of time, but mainly to the more complete
phase information held by the bispectrum data (see next section). The 8 and 15 configurations further improves
the results, reconstructing the object with the right shape even with low SNR phases.

Finally the images of the most symmetric sources, “Symmetric stars” and “Disk+Jet”, underline the difficulty
to reconstruct objects on which phases do not bring much useful information. On those objects the influence of
uv coverage is less relevant than the quality of the phase measurements. We carried out further simulations at
high phase noise which showed even the 15-telescope configuration unable to retrieve correctly the “Disk+Jet”
target.

5. POWERSPECTRUM AND BISPECTRUM INFLUENCE

We discussed in a previous paper how reconstructions can be severely affected by missing bispectrum.12 To
simulate missing bispectrum we reconstructed images with only a subset of the bispectrum or powerspectrum.
In a real interferometer, bispectrum points are expected to be more difficult to acquire than powerspectrum,
so we concentrate here on the results obtained when using the full set of powerspectrum data and 0%, 25%,
50%, 75%, 100% of the available bispectrum data. The simulations were done for three noise levels on both the
powerspectrum and bispectrum: low SNR data (> 20% powerspectrum errors, > 20◦ closure phases), medium
SNR data (about 10% powerspectrum errors, about 10◦ closure phases), and high SNR data (1% powerspectrum
errors, 1◦ closure phases).



As expected, when the noise levels of the bispectra and the powerspectra are homogeneous (both low, medium
or high), the reconstruction error are decreasing with the bispectra and powerspectra utilisation percentages.
Fig. 6 is a typical example. Purely from the viewpoint of feature, on this source (and for most other sources at
medium SNR) a plateau of performance is reached after the 50% threshold. i.e. in most practical cases less than
50% of bispectrum are really needed when the other type of data is fully available.

Our simulations tackled the issue of the usability of low SNR data, and they demonstrated that the Bayesian
approach ensures that all data points are useful. On Fig. 6 a constant improvement in reconstruction quality is
noted for both sources when low SNR bispectrum are progressively added to high SNR powerspectrum. Although
is still widely believed by some interferometrists that very noisy data should be discarded, this is a remnant of
a time when non-Bayesian algorithms such as CLEAN were used, in which the noise was improperly treated.
When using the current generation of image reconstruction software and adding powerspectrum to a full set of
bispectra (whichever their SNR), performance is improved overall. Similarly even if added bispectra are noisier
than the corresponding powerspectrum, they nonetheless still bring useful information, both on the phase and
on the amplitude (through the triple amplitude). This point is to keep in mind when very few bispectrum points
are available on an object and are known to be extremely noisy.

When the SNR discrepancy between the bispectrum and powerspectrum is small, their relative influence in
the success of a reconstruction depends mainly on the amount of symmetry of the observed target. As visibilities
for a point-symmetric object are real, the information bispectrum points provide is very small, i.e. the triple
amplitudes. Simulation results on the most centrosymmetric object show that reconstructions using mainly
powerspectrum always give better performance than those using mainly bispectrum. Thus one might think
powerspectrum on its own is enough to reconstruct point-symmetric sources, and that bispectrum data become
relevant only when the target is asymmetric. However such statements are based on the assumption that you
know the degree of symmetry of your source, which is only possible if any least some phases have been secured
on this target or if the target shape was already partially known. As shown previously, datasets containing
predominantly powerspectrum but with a few bispectrum data points contains often enough information about
the source asymmetries to ensure a correct reconstruction. Therefore in general the powerspectrum data can
be considered as an indication of the amount of flux present in the symmetrized object, while the bispectrum
provides the exact localisation of this flux in its non-symmetric parts.

The problem of reconstruction from powerspectrum-only data is mathematically undetermined so that both
the image of the target and its symmetric can be indifferently retrieved. In several simulations using very few
bispectrum points (0% and 25%), we determined that the reconstructed image was a superposition of the source
with its symmetric. Even a full uv coverage was unable to prevent this effect. A decent amount of bispectrum is
definitively required to remove the symmetry ambiguity which exists in non point-symmetric targets. As more
bispectrum are used, this ambiguity is progressively lifted. That’s why in most practical cases, a reconstruction
using mostly powerspectrum plus a few bispectrum is roughly equivalent performance-wise to a reconstruction
using mostly bispectrum plus a few powerspectrum.

6. CONCLUSION

We have presented several simulation assessing the capabilities of our image reconstruction software BSMEM
when reconstructing from noisy datasets or with incomplete bispectrum coverage.

Although our test targets may be considered difficult cases, the presented model-independent reconstructions
have been successful for the typical noise levels of current facilities. As expected the image quality mostly
depends on theuv coverage.

Reconstruction with a poor uv coverage (4 telescopes) is difficult but still possible for most objects. The
acquisition of bispectrum data is of primary importance for actual performance of model-independent reconstruc-
tions, and achieving an adequate sampling of decent quality bispectra is arguably more important than a simple
increase in the number of telescopes. With excellent SNR on the data and enough time, 4 telescope array would
be generally sufficient for the simplest targets, and a 6 telescope one would generally produce images including
all features of moderately difficult sources. Compared to the ideal situation of a 15 telescope interferometer, the
6 and 8 telescope cases lead to noisier reconstructions. However even at medium signal-to-noise, they allow to
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Figure 6. Reconstruction of the “Disk + Spots” and “Seven Stars” sources using subsets of all available bispectrum data,
with high SNR powerspectra and the 6-telescope array configuration. Whether the bispectra are of high or low SNR
powerspectrum, the image quality of the reconstruction is visibly improved up to 75%.

retrieve all the features of the sources. The 8 telescope array is particularly impressive in this regard: nothing
but a slight noise reduction is gained from adding other stations.

Requirements on bispectrum and powerspectrum coverage vary with the nature of the observed target. The
reconstruction error is not always a decreasing and monotonous function of the bispectrum percentage. A
reconstruction with optimal bispectrum coverage but average uv coverage may indeed be superior to another
with better uv coverage but with poorer bispectrum sampling. Closure phases of reasonable SNR are generally
sufficient, and contrary to the intuition, closure phases of much higher SNR than the powerspectrum do not
necessarily improve the reconstruction by a substantial amount.

Moderate noise on closure phases rarely prevents a successful reconstruction, so that the brightest components
of the targets or at least its global shape can still be identified. Noise on visibility amplitudes, though, strongly
degrades the performance, up to a point where convergence is hard to achieve. The image quality offered by a 6
telescope array at low SNR is very similar to that of a 4 telescope array at medium SNR.

Consequently the challenge for next-generation inteferometers will be to obtain high SNR measurements
while increasing uv coverage. Future facilities such as MROI are oriented toward these goals, and they should
definitively bring imaging into the foreground of interferometry.
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Markus; Danchi, William C.. Proceedings of the SPIE, Volume 6268, pp. 62681U (2006). ], Presented at the
Society of Photo-Optical Instrumentation Engineers (SPIE) Conference 6268 (July 2006).

[3] Meimon, S. C., Mugnier, L. M., and Le Besnerais, G., “A novel method of reconstruction for weak-phase
optical interferometry,” in [New Frontiers in Stellar Interferometry, Proceedings of SPIE Volume 5491.
Edited by Wesley A. Traub. Bellingham, WA: The International Society for Optical Engineering, 2004.,
p.909 ], Traub, W. A., ed., Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference 5491, 909–+ (Oct. 2004).

[4] Meimon, S. C., Mugnier, L. M., and Le Besnerais, G., “Reconstruction method for weak-phase optical
interferometry,” Optics Letters 30, 1809–1811 (July 2005).

[5] Ireland, M. J., Monnier, J. D., and Thureau, N., “Monte-Carlo imaging for optical interferometry,” in
[Advances in Stellar Interferometry. Edited by Monnier, John D.; Schöller, Markus; Danchi, William C..
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