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Abstract—All of the design work and major construction has 
been completed for the Magdalena Ridge Observatory 
interferometer (MROI). The majority of the subsystems are 
currently (2012) being assembled. When completed, the array 
will consist of 10 fully transportable 1.4 m telescopes. These 
will support multiple array configurations, with baselines from 
7.8 m to 346 m to give sub-milliarcsecond angular resolution. 
We provide an assessment of the potential imaging capability 
of the MRO interferometer with regard to geosynchronous 
targets. Our preliminary results suggest that a significant 
proportion of GEO targets may be accessible and that it may 
be possible to routinely extract key satellite diagnostics with an 
imaging capability that would be able to distinguish, for 
example, 70 cm features on a 5-meter satellite bus and payload, 
30 cm features on a 2-meter satellite bus or similarly sized 
structure, as well as precise quantitative information on much 
larger structures such as 10m long solar panels. Optimised 
observation and data reduction strategies are likely to allow 
these limits to be improved in due course. 
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1. INTRODUCTION 
The Magdalena Ridge Observatory Interferometer (MROI) 
project is an international collaboration between the New 
Mexico Institute of Mining and Technology (NMT) and the 
Astrophysics Group of the Cavendish Laboratory at the 
University of Cambridge in the UK to build the world’s 
most ambitious and sensitive optical/near-infrared imaging 
interferometer. The MROI offices are located on the campus 
of New Mexico Tech  in Socorro, New Mexico, and the 
observatory site is located on a ridge just south of South 

Baldy in the Magdalena Mountains, about 48 km (30 miles) 
west of Socorro, at an elevation of approximately 3,120 
meters (10,460 ft) above sea level.  

The MROI has been designed to be the world’s leading, 
high-sensitivity optical/near-infrared facility interferometer. 
It will comprise an array of up to ten 1.4-meter diameter 
unit telescopes (UT) arranged in an equilateral “Y” 
configuration. Each of these UTs will collect light from a 
celestial source and send a collimated, stabilized beam of 
light to a laboratory facility located close to the array. 
There, the beams will be path-equalized and superposed to 
generate interference fringes that encode information about 
the brightness distribution of the source. In this way, 
diffraction-limited imaging with an effective angular 
resolution given by the largest inter-UT separation will be 
realized. 

The MROI’s unit telescopes will be re-locatable amongst a 
set of 28 separate foundation pads, so as to give inter-
telescope separations (i.e. baseline lengths) from 7.8 meters 
to 346 meters. At its shortest operating wavelength, the 
MROI will have a maximum angular resolution of 
approximately 0.35 milliarcseconds. It will thus be able to  
resolve targets one hundred times smaller than those 
resolvable with the Hubble Space Telescope (HST), or 
indeed by all ground-based optical telescopes that might be 
deployed in the next few tens of years. 

From the outset, the MROI has been designed to satisfy 
multiple user communities. One of its core missions will be 
to provide a tool for the commercial, military and 
intelligence communities to support space situational 
awareness. This paper provides an exploration of the 
MROI’s capabilities in this role which were first discussed 
in Bakker et al 2009 [1]. In the following sections we 
provide an introduction to the MROI, we discuss how well 
matched its sensitivity and speed of operation are to the 
observation of typical GEO targets, and we provide a 
preliminary assessment of the diagnostic utility of 
interferometric imaging of such targets with an array like 
the MROI. 
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2. CURRENT STATUS OF GEO IMAGING 
Imaging of most GEO targets is difficult with ground-based 
telescopes. At near-infrared wavelengths, even a 10m-class 
telescope with full adaptive optics correction is limited by 
diffraction to resolving scales of 8 meters or more at the 
distance of geosynchronous orbit. This is clearly inadequate 
for distinguishing features on satellite buses with typical 
dimensions of 3-8 m. To achieve sub-meter scale imaging 
would require a diffraction-limited telescope at least 50 
meters in diameter, but even the next generation of giant 
astronomical telescopes, with billion-dollar price tags, will 
be only 30 meters or so in diameter. Thus it is unrealistic to 
expect this kind of capability from a ground-based filled-
aperture telescope in the near or medium term. 

An alternative to large monolithic telescopes comes from 
interferometry with arrays of more modest-sized telescopes. 
Astronomical interferometers such as CHARA and VLTI 
are now producing images with angular resolutions far 
exceeding those of a 50-meter telescope. Thus in principle 
interferometry delivers the angular resolution required to 
tackle the GEO imaging problem. However, there are two 
key problems that have hampered the use of interferometry 
in this domain. The first is that most current interferometers 
are only suited to imaging relatively bright objects, brighter 
than the majority of GEO targets unless these are “glinting” 
(see, e.g. Hindsley et al, 2011 [2]). The second is that most 
existing interferometer arrays do not have enough telescopes 
to make images of complex geostationary objects. The 
design of the MRO interferometer overcomes all these 
limitations. 
 

3. KEY MROI DESIGN FEATURES RELEVANT TO 
GEO IMAGING 

The primary functional goal of the MROI is to deliver 
model-independent images of the very faintest and complex 
astronomical targets. These goals relate directly to the 
limitations of existing interferometers with respect to 
geostationary targets, and here we explain briefly how the 
MROI design achieves these goals. 

The MROI has been designed to be much more sensitive 
than existing arrays. Analyses of the global error budget for 
the array predict a fifty- to one hundred-fold (50–100) 
improvement in sensitivity over the current best optical and 
infrared synthesis telescopes such as the Keck, CHARA and 
VLT interferometers. The faintest targets that are routinely 
observable with these facility class arrays today have 
2.2 μm (K band) magnitudes of between 7 and 10. This is 
some 3–6 magnitudes brighter than the MROI design 
sensitivity of K = 13. In other terms, the MROI will be able 
to image objects some 40 to 600 times dimmer than is 
possible with the current generation of ground based 
interferometers. 

The reason for the MROI’s enhanced sensitivity is largely 
due to an emphasis in its design on minimizing losses: each 

one of its eight sequential opto-mechanical subsystems has 
been optimized so as to maximize optical throughput and to 
minimize signal losses due to uncontrolled spatial and 
temporal wavefront errors. Below are a few details of the 
implementation adopted at the MROI which offer some 
pointers to the types of strategies we have adopted: 

• The use of unit telescopes (UTs) designed to 
exhibit very low levels of internal mechanical 
vibration.  

• The use of evacuated beam paths all the way from 
the UTs to the beam combination laboratory. This 
eliminates turbulence in the light paths from the 
telescopes and removes the need for any optics to 
compensate for longitudinal atmospheric 
dispersion. 

• The use of light in separate wavelength channels to 
monitor and/or control the interferometer sub-
systems so that no light from the science target 
need be diverted from the science instrument. For 
example, for a science observation at 1.25 microns, 
light from 0.60–1.0 microns would be used to 
control the low-order adaptive optics (fast tip/tilt) 
systems, whereas light in the 1.65 micron window 
would be used to monitor and control optical path 
length perturbations. 

• The use of a single opto-mechanical system for 
equalizing the optical path of the light beam from 
each unit telescope. Other arrays frequently use 
multiple such systems – so-called delay lines – to 
allow the optical path from each telescope to be 
adjusted, but in doing so multiple reflections of the 
light beam are necessary. The use of single stroke 
delay lines at the MROI, together with other 
similar design features, means that the MROI 
optical train has roughly 10 fewer reflections from 
the sky to the science instrument detector than a 
typical implementation at a contemporary facility 
array with no loss of functionality.  

• The use of an automated end-to-end alignment 
system for the full optical train, used both before 
target observation begins, and subsequently in a 
real-time mode so that as an observation is being 
executed the effects of any slow opto-mechanical 
creep are eliminated. 

The second important distinguishing feature of the MROI is 
its emphasis on model-independent imaging of complex 
targets. By “model-independent” we mean that in principle 
nothing needs to be known beforehand about the shape of 
the target in order to make an image. This is to be contrasted 
with “parametric imaging”, used at almost all other 
facilities, where assumptions about the target structure have 
to be made before the interferometric measurements can be 
usefully interpreted. For example, for an astronomical 



 

 

observation of a star, one frequently must a
circularly symmetric before the 
measurements can be interpreted in terms 
size. 

Figure 1 – Layout of the telescope array
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targets would be too faint to be imaged by other arrays, with 
typical limiting magnitudes of 7-9. 

Evidence from the literature (Payne 1998 [3]; Payne et al 
2006 [4]) suggests that roughly 50% of GEO satellites have 
K band (2.2 micron) magnitudes brighter than 12.5. Some 
examples of photometry of GEO satellites are shown in 
Figure 4 (see caption for details).  

 

Figure 4 – Measurements of infrared magnitudes of a 
number of GEO satellites at 1.25 microns, from Sanchez 
et al, 2000 [5].  

These J band measurements reveal two classes of targets. 
The first show a characteristic brightening and then fading 
with increasing longitude, with excursions of as much as a 
factor of 10, i.e. 2.5 magnitudes. A second class show much 
less variation in brightness, presumably due to a smaller 
contribution to the total brightness from large highly 
infrared-reflective solar panels that are altering their 
orientation with respect to the observer as a function of 
time. Importantly, in this survey of Sanchez [5], even the 
faintest targets had mean J band magnitudes of 
approximately 11. In the H-band (1.65 microns) the objects 
were measured to be approximately 0.3–0.8 magnitudes 
brighter. The MROI, with an H-band limiting magnitude of 
14, should be able to track fringes on all these targets, 
providing they have significant amounts of compact (< 5 m 
in size) structure. The larger datasets of Payne and 
colleagues [3,4] suggest that perhaps 50% of all GEO 
satellites will be visible with the MROI in the K band, 
assuming the typical red colors seen by Sanchez. These 
would imply a median K magnitude of 12.5. Payne (2010) 
also confirms that a magnitude sensitivity of 12 in the 
astronomical R-band would catch 50% of all targets [6]. 

While the MROI will certainly be able to detect targets with 
a K magnitude of 12.5, a more important question is 
whether it will be able to routinely provide reliable images 
of such targets. The ability of a ground-based interferometer 
to image a target depends crucially on how resolved the 
target is on the baselines that are being measured.  For a 
“good” image to be recovered, the interferometer must 
secure data on long enough baselines that the smallest 
structures are appropriately resolved, but also on much 

shorter baselines so that the larger scale features of the 
target are detected and recovered too. The range of physical 
scales of interest in the target – which might for example 
run from a less than a meter (i.e. less than the diameter of  a 
typical main antenna) to 15 meters (the length of a typical 
large solar panel) – will thus act as important drivers for the 
amount and quality of data that must be secured.  

At many long baseline interferometers, for example the 
CHARA array at Mt Wilson and the Navy Prototype Optical 
Interferometer (NPOI), now renamed Navy Optical 
Interferometer (NOI), in Flagstaff, this need to secure data 
on a wide range of interferometer baselines has been 
problematic. This has arisen primarily for three reasons: 

• There may be too few unit telescopes to permit a 
wide range of inter-telescope separations to be 
realized without necessitating physical movement 
of the telescopes. 

• Even if there are a suitable number of telescopes, it 
may not always be possible to combine beams 
from all in an efficient way. 

• The signal-to-noise (S/N) ratio for measurements 
made with an optical/infrared interferometer is a 
strong function of how well resolved the target is. 
On baselines where the target is well resolved the 
S/N will be low, and so it may be difficult to secure 
reliable and hence useful data. 

At the MROI, the design of the array infrastructure has been 
optimized specifically to allow these difficulties to be 
overcome. Notably:  

(1) The MROI will utilize up to 10 telescopes 
simultaneously, although its initial deployment will be 
with 6 to 7 unit telescopes. 

(2) The MROI will utilize a multi-way science beam 
combiner so that as many inter-telescopes baselines 
can be interrogated at once as is reasonably possible.  

(3) The MROI will incorporate a fringe tracker (a separate 
instrument from the science instrument), which will 
monitor the atmospheric disturbances on the shortest 
nearest-neighbor baselines and stabilize the array 
against the atmosphere. This has been designed to 
operate at very low flux levels, corresponding to 
K = 13, i.e. 0.5 magnitudes fainter than the median 
flux levels expected for a wide range of GEO targets 
of interest.  

A preliminary assessment of the range of common GEO bus 
and payload sizes suggests that it is likely that a reasonable 
fraction of targets will be compact enough to give high 
signal-to-noise interference fringes on the short fringe 
tracker baselines. Under these conditions, active control of 
the atmospheric fluctuations should be straightforward, and 
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 8

 
6. CONCLUSIONS 

We have outlined the key design features of the MROI and 
have concluded that it offers an unprecedented new 
capability in GEO imaging. The MROI capitalizes on both 
significantly enhanced sensitivity compared with existing 
ground based interferometer arrays and also on significantly 
higher (> 10×) resolution as compared to any ground-based 
AO-corrected telescope likely to be deployed in the next 
10–20 years. 

The Magdalena Ridge Observatory is seeking partners to 
help bring this vision to a reality and to develop its key role 
as an operational facility for GEO imaging. The next stages 
of development will be to demonstrate the high design 
sensitivity and fringe-tracking capabilities in the field with a 
three-UT deployment, and then to accelerate the full 
deployment and validation of capabilities with a 7-telescope 
imaging array, prior to the full 10-telescope buildout. 

 
  

 
 

REFERENCES  
[1] Bakker, E.J. et al 2009 “Imaging of Geostationary 

Satellites with the MRO Interferometer”, Poster 
presentation, AMOS Conference, Sep 1-4, 2009.  

[2] Hindsley, R.B.  et al 2011 “Navy Prototype Optical 
Interferometer observations of geosynchronous satellites, 
Applied Optics, 50, 2692. 

[3] Payne, T.E. 1998. “Target selection database” Schafer 
Corporation. 

[4] Payne, T.E. et al 2006. “Electro-Optical Signatures 
Comparisons of Geosynchronous Satellites” Aerospace 
Conference, 2006 IEEE 

[5]  Sanchez et al 2000. “Photometric measurements of deep-
space satellites”, Proc. SPIE 4091, 164. 

[6]  Payne, T.E, priv. comm. 2010. 
 

BIOGRAPHIES 
 Ifan Payne.  Dr. Ifan Payne is 
currently the Program Director of 
the Magdalena Ridge 
Observatory (MRO) which is 
located at the New Mexico 
Institute of Mining and 
Technology (NMT) at Socorro, 
New Mexico. He obtained his 
B.Arch. in Architecture from the 

Welsh School of Architecture in Cardiff and his Ph.D. in 

Architectural Science from the University of London. As 
Program Director, he is responsible for development at 
the observatory including the Magdalena Ridge 
Observatory Interferometer (MROI) which is being 
created in partnership with the Cavendish Laboratory of 
the University of Cambridge, UK. Dr. Payne has 
conducted public and professional workshops on project 
and program management widely in the USA, Canada 
and the UK. 

David Buscher. Dr Buscher  is a 
Lecturer in Physics at the 
University of Cambridge, UK. He 
is joint System Architect for the 
Magdalena Ridge Observatory 
Interferometer in New Mexico. 
His work centers around 
designing, building, and using 
high-angular-resolution imaging 

instruments for optical and infrared astronomy. He has 
bachelors and PhD degrees in Physics from the 
University of Cambridge. 

Chris Haniff. Dr Haniff is a 
Professor of Physics at the 
University of Cambridge, UK. He 
has contributed significantly to the 
use of high-angular resolution 
imaging techniques in astronomy, 
in particular the application of 
aperture synthesis method at 

optical and infrared wavelengths. He is currently head of 
the Cambridge based team collaborating with New 
Mexico Tech on the deployment of the Magdalena Ridge 
Observatory Interferometer and responsible for the 
overall technical design of the facility. He has bachelors 
and masters degrees in Physics from the University of 
Cambridge, where he also studied for his PhD in 
Astronomy.  

Colby Jurgenson. Dr Jurgenson 
is the lead Instrument Scientist for 
the Magdalena Ridge 
Observatory Interferometer. He is 
responsible for the design and 
development of a number of the 
interferometer's opto-mechanical 
subsystems, including the science 
and fringe tracking beam 

combiners, as well as alignment and spectral calibration 
instruments. He has a bachelor's degree in Physics from 
Lewis & Clark College and received his PhD in Physics 
from the University of Denver. 



 

 9

Van Romero.  Dr. Romero is 
currently the Vice President for 
Research, a Professor of physics 
and serves as the chief officer of 
the Research and Economic 
Development Division of New 
Mexico Institute of Mining and 
Technology (New Mexico Tech).  

He obtained his B.S. and M.S. in Physics from New 
Mexico Tech and his Ph.D. in Physics from the State 
University of New York at Albany.  As the Research Vice 
President, he is responsible for a diverse research 
portfolio with an annual budget of $100M.  While at New 
Mexico Tech he has served as the Principal Investigator 
for projects that total over ¼ of a Billion dollars which 
cover astronomy, earth science, Homeland Security and 
energy.  Prior to joining the University, Dr. Romero 
worked at four DOE laboratories and spent 15 years in 
the private sector. 

John Young. Dr. Young is a 
Senior Research Associate at the 
University of Cambridge, where 
he leads two work packages being 
contributed to MROI by 
Cambridge. His research 
interests include optical synthesis 
imaging and Bayesian data 

analysis. Dr. Young has a PhD in astronomy and is an 
author or co-author on over 50 publications related to 
optical interferometry and its applications. 

 Michelle Creech-Eakman.  Dr. 
Creech-Eakman is an Associate 
Professor of Physics at New Mexico 
Institute of Mining and Technology 
and the MROI Project Scientist.  Her 
research interests are in the areas of 
the use of state-of-the-art optical and 
infrared instrumentation and studies 

of stellar evolution.  Prior to coming to NM Tech, Dr. 
Creech-Eakman was a member of the Palomar Testbed 
Interferometer and Keck Interferometer teams at Caltech 
and JPL. 

 


	MAIN MENU
	CD/DVD/USB Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Table of Contents

