Beam Combiner studies for MROI

F.Baron, D.F. Buscher, J. Coyne, M.J. Creech-Eakman*, C.A.Haniff, C.A. Jurgenson*, J.S. Young

Cavendish Laboratory, University of Cambridge, UK * New Mexico Institute of Mining and Technology, USA

Aims & Background

- Want beam combiners that will meet MROI top-level science goals
- First priority is near-infrared combiners (J,H,K bands)
 - Visible-wavelength combiners will be part of a later phase
- Cambridge currently performing studies of candidate concepts
 - Will be finished in a few months
 - COAST experience & VLTI concept study feed into this

MROI combiner requirements

Top-level Requirements

- Separate science and fringe tracking combiners
- Combiners operate simultaneously
 - Need to match paths (inter-band dispersion, internal drifts)
 - Science at J or H or K, choice of $\lambda/\Delta\lambda$
- Handle 6 telescopes
- Upgrade path for 10 telescopes

29 May 2006

UNIVERSITY OF CAMBRIDGE

Requirements - Individual Combiners

- Requirements for Fringe Tracking Combiner:
 - Support hardware coherencing and software co-phasing
 - Limiting sensitivity H=14 for AGN science mission
 - Switchable between operation at H (1.5-1.8μm) & K (2.2-2.5μm)
 - Best sensitivity will be at H
 - Track on all nearest-neighbour baselines simultaneously
- Top-level requirements for IR Science Combiner:
 - Science at J (1.2-1.35 μ m) or H or K, choice of $\lambda/\Delta\lambda \sim 30$, 300 (switchable)
 - Possibly a case for high-res. mode $(\lambda/\Delta\lambda > 1000)$
 - S/N>2 in 100sec for K~13 at low spectral resolution
 - For AGN science mission
 - Access to all baselines and independent closure triangles, within ~few minutes
 - Calibration of V² to 2% rms, closure phase to 0.8° rms (bright targets)

Candidate Fringe Tracking Combiners

- Pupil-plane pairwise nearest neighbour (PNN)
- Image-plane pairwise nearest neighbour (INN)
- Image-plane all-on-one 6-way (I6)

Candidate Science Combiners

- Contacted 4-way pupil plane fed by fast switchyard (P4S)
 - 4 of 6 beams selected by fast switchyard
 - Contacted optics combine 4 beams
 - Path modulators encode fringes in time domain
 - 4 combiner outputs, each contains all baselines
- Contacted 8-way (6 inputs used) pupil plane (P8)
 - Always feed in 6 beams
 - 2-position internal switchyard selects baselines/triangles measured
- 4-way image plane fed by fast switchyard (I4S)
 - 4 of 6 beams selected by fast switchyard
 - Combine 4 beams in focal plane on single detector spatial fringes
- 6-way image plane (I6)

Fast Switchyard for P4S/I4S

- Needed when > 4 telescopes
- Select any 4 from 6 beams, preserve relative paths

Output beams

Input

beams

UNIVERSITY OF CAMBRIDGE

P4(S) Combiner

- Similar to existing contacted 4-way 1-2.5µm combiner made by Cambridge
- Existing combiner features:
 - Performance verified in lab
 - But designed for 5mm beams
 - Advantages of contacted optics
 - Stability
 - Ease of alignment
- Disadvantages
 - >4 beams unproven until now
 - Need thin or matched coatings

8

29 May 2006

Fabien Baron - Advances in Stellar Interferometry, Orlando 2006

CAMBRIDGE

P8 Switchyard and Combiner

Fabien Baron - Advances in Stellar Interferometry, Orlando 2006.

I4S beam combiner layout

CAMBRIDGE

Spectrographs

- Spectrograph for pupil plane combiner is simple
 - Focus single combined beam onto cold stop
 - Inside Dewar : collimate, disperse, and focus spectrum onto FPA
 - Multiplexing possible
- Spectrograph for image plane is more complex
 - Same principle but very large anamorphosis factors (>100)
 - Dewar size must be kept reasonable...
- Reconfigurations
 - Want to switch:
 - Low <=> Medium dispersion (Science Combiners only)
 - Operating waveband
 - May need change of dispersing element even if not changing spectral resolution
 - OK to switch a few times a night, or even between nights
 - Typically need to adjust last mirror and FPA

29 May 2006

NIVERSITY OF

Ongoing work

- Science combiner spectrographs (I... & P...)
 - Simultaneous optimization for 6 configurations (3 bands \times 2 res.)
- Pupil plane (P...) combiners
 - How many combiner outputs can be multiplexed onto each detector ?
 - Contacted combiners glass procurement
- Image plane (I...) combiners
 - Optimization to reduce Dewar sizes
- Fast switchyards (...S)
 - Alignment procedure (if needed) after reconfiguration
 - See if repeatable enough to use look-up table

Evaluation of designs

- Realistic signal-to-noise
 - FT combiner S/N, sets magnitude limit for operating array
- Imaging speed, depends on:
 - Science combiner instantaneous S/N
 - No. of switchyard reconfigurations required (if any)
 - Reconfiguration & calibration overheads
- Cost : Optics, Mechanics, Detectors
- Technical risk
- Schedule risk
- Calibration and stability issues

29 May 2006

NIVERSITY OF

Conclusion

- Demanding MROI requirements for infrared instruments
- Several optical combiners have been designed :
 - FT : pupil or image plane pairwise, or all-in-one I6 combiner
 - SC : contacted 4/6 beams, or image plane 4/6, switchyards if necessary
- Most optimizations are finished and final evaluation is ongoing
- Milestones:
 - Evaluation finished in July 06
 - First closure phase in August 08
 - Six telescopes on site in late 2009

29 May 2006

NIVERSITY OF

